File size: 6,927 Bytes
ac49a80
 
e223247
3eec9da
49706d2
ac49a80
bb9efa9
58dd73c
ac49a80
806014f
ac49a80
890a566
 
 
 
ac49a80
890a566
 
 
5dc77e3
 
890a566
5dc77e3
890a566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c89ccd
79a4ff7
 
9b9adeb
79a4ff7
 
 
 
 
9b9adeb
79a4ff7
 
1d3ffcf
9b9adeb
79a4ff7
1d3ffcf
766875d
 
0b59253
766875d
 
 
0b59253
1d3ffcf
766875d
 
79a4ff7
5da99b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd8ded1
 
5da99b5
1583fd0
5da99b5
 
e223247
 
 
711f46b
e223247
 
 
 
 
 
 
 
 
 
 
49706d2
 
 
 
 
 
 
 
 
 
740bd9b
49706d2
fc9d09f
740bd9b
49706d2
740bd9b
49706d2
740bd9b
49706d2
5ba4f1f
49706d2
740bd9b
49706d2
e9543a1
79a4ff7
fc9d09f
5744d54
e9543a1
79a4ff7
fc9d09f
89c658e
5744d54
49706d2
 
e223247
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import streamlit as st
import pandas as pd
import base64
import json
from st_pages import Page, Section, show_pages, add_page_title,add_indentation
st.set_page_config(
    page_title="app",
    page_icon="πŸ“ˆ",
)
st.markdown("<h1 style='text-align: center; color: black;'> Welcome to DataAI! πŸ‘‹</h1>", unsafe_allow_html=True)

def get_base64_of_bin_file(png_file):
    with open(png_file, "rb") as f:
        data = f.read()
    return base64.b64encode(data).decode()


def build_markup_for_logo(
    png_file,
    background_position="0% 0%",
    margin_top="5%",
    image_width="60%",
    image_height="",
):
    binary_string = get_base64_of_bin_file(png_file)
    return """
            <style>
                [data-testid="stSidebarNav"] {
                    background-image: url("data:image/png;base64,%s");
                    background-repeat: no-repeat;
                    background-position: %s;
                    margin-top: %s;
                    background-size: %s %s;
                }
            </style>
            """ % (
        binary_string,
        background_position,
        margin_top,
        image_width,
        image_height,
    )


def add_logo(png_file):
    logo_markup = build_markup_for_logo(png_file)
    st.markdown(
        logo_markup,
        unsafe_allow_html=True,
    )

add_logo("logoo.png")

paragraph = """
<span style="color:black;">As a data AI team, our capabilities are demonstrated through the functionalities showcased on our demo site. 
The team has developed a diverse set of applications that leverage artificial intelligence and machine learning techniques. 
The "Home" page serves as a central hub, providing access to various sections. 
Within the "GenAI" section, we showcase advanced technologies such as an AI Chatbot, auto code generation, report generation, and score generation. 
The "Deep Learning" section features demonstrations in image analytics, video analytics, and speech recognition. 
In the "Machine Learning" section, we exhibit our proficiency in regression, forecasting, clustering, and optimization. 
Our team's expertise lies in delivering innovative solutions that harness the power of data and AI, addressing a wide range of challenges and applications.</span>
"""


# Display the paragraph with black color within a Streamlit HTML element
st.markdown(paragraph, unsafe_allow_html=True)
st.markdown("<h3 style='text-align: center; color: black;'>What is GenAI?!!! </h2>", unsafe_allow_html=True)
g_p = """"<span style="color:black;">GenAI" stands for "General Artificial Intelligence," which refers to the concept of developing intelligent systems capable of performing tasks across a broad spectrum of domains, similar to the versatility and adaptability observed in human intelligence. In a short summary, "GenAI" embodies the pursuit of creating AI systems that can comprehend, learn, and apply knowledge across various contexts, aiming for a more generalized and flexible form of artificial intelligence.</span>"""
st.markdown(g_p, unsafe_allow_html=True)
st.markdown("<h3 style='text-align: center; color: black;'>What is Deep Learning?!!! </h2>", unsafe_allow_html=True)

d_l = """<span style="color:black;">Deep learning is a subfield of machine learning that involves training artificial neural networks with multiple layers (deep neural networks) to perform tasks such as image and speech recognition, natural language processing, and other complex pattern recognition tasks. The depth of the network allows it to automatically learn hierarchical representations of data, extracting features at different levels of abstraction. Deep learning has shown remarkable success in various applications, especially when dealing with large amounts of data, enabling the development of sophisticated models for complex tasks.</span>"""
st.markdown(d_l, unsafe_allow_html=True)
st.markdown("<h3 style='text-align: center; color: black;'>What is Machine Learning?!!! </h2>", unsafe_allow_html=True)

m_l = """<span style="color:black;">Machine learning is a branch of artificial intelligence (AI) that focuses on developing algorithms and models that enable computers to learn patterns and make predictions or decisions without being explicitly programmed. It involves the use of data to train algorithms, allowing machines to improve their performance on a specific task over time. Machine learning is applied in various domains, including image and speech recognition, natural language processing, recommendation systems, and more, to extract insights, recognize patterns, and make predictions based on input data.</span>"""
st.markdown(m_l, unsafe_allow_html=True)

footer="""<style>
a:link , a:visited{
color: blue;
background-color: transparent;
text-decoration: underline;
}

a:hover,  a:active {
color: red;
background-color: transparent;
text-decoration: underline;
}

.footer {
position: fixed;
left: 0;
bottom: 0;
width: 100%;
background-color: white;
color: black;
text-align: center;
}
</style>
<div class="footer">
<p>Developed with ❀ by DataAi Team. Please contact us at +91 12-32130332</p>
</div>
"""
st.markdown(footer,unsafe_allow_html=True)   

main_bg_ext = "jpg"
main_bg = "vally4.jpg"
        
st.markdown(
 f"""
 <style>
 .stApp {{
     background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()});
     background-size: cover
 }}
 </style>
 """,
 unsafe_allow_html=True
)

add_indentation()

# Specify what pages should be shown in the sidebar, and what their titles and icons
# should be
show_pages(
    [
        Page("app.py", "Home", "🏠"),
        Section("GenAI", icon="πŸ€–"),
        Page("pages/AI_Chatbot.py", "AI Chatbot", "πŸ“ˆ",in_section=True),
        # Pages after a section will be indented
        Page("pages/cg.py", "Auto Code Generation", "πŸ“ˆ"),
        Page("pages/Auto_Report_Generation.py", "Auto Report Generation", "πŸ“ˆ"),

        Page("pages/Auto_Score_Generation.py", "Auto Score Generation", "πŸ“ˆ"),

        Page("pages/core_risk.py", "Core Risk Classification", "πŸ“ˆ"),

        Page("pages/jury_records.py", "Court Records", "πŸ“ˆ"),

        Page("pages/topic_classification.py", "Topic Classification", "πŸ“ˆ"),
        Section("Deep Learning", icon="πŸ€–"),
        Page(path = "pages/deep_learning_demo.py", name = "Image Analytics", icon = "πŸ“ˆ"),
        Page(path = "pages/deep_learning_demo2.py",name = "Video Analytics", icon ="πŸ“ˆ"),
        Page(path = "pages/sp.py",name = "Speech Recognization", icon = "πŸ“ˆ"),
        Section("Machine Learning", icon="πŸ€–"),
        Page(path = "pages/machine_learning_demo.py",name = "Regression", icon = "πŸ“ˆ"),
        Page(path = "pages/machine_learning_demo2.py",name = "Forecasting", icon = "πŸ“ˆ"),
        Page(path = "pages/tc.py",name = "Clustering", icon = "πŸ“ˆ"),
        Page(path = "pages/reg.py",name = "Optimization", icon ="πŸ“ˆ")
        
      
    ]
)