File size: 7,586 Bytes
e0c66e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import glob
import os.path
import sys
from collections import namedtuple
import torch
from omegaconf import OmegaConf

from ldm.util import instantiate_from_config

from modules import shared, modelloader, devices
from modules.paths import models_path

model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir))

CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config'])
checkpoints_list = {}

try:
    # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.

    from transformers import logging

    logging.set_verbosity_error()
except Exception:
    pass


def setup_model():
    if not os.path.exists(model_path):
        os.makedirs(model_path)

    list_models()


def checkpoint_tiles():
    return sorted([x.title for x in checkpoints_list.values()])


def list_models():
    checkpoints_list.clear()
    model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt"])

    def modeltitle(path, shorthash):
        abspath = os.path.abspath(path)

        if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
            name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
        elif abspath.startswith(model_path):
            name = abspath.replace(model_path, '')
        else:
            name = os.path.basename(path)

        if name.startswith("\\") or name.startswith("/"):
            name = name[1:]

        shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]

        return f'{name} [{shorthash}]', shortname

    cmd_ckpt = shared.cmd_opts.ckpt
    if os.path.exists(cmd_ckpt):
        h = model_hash(cmd_ckpt)
        title, short_model_name = modeltitle(cmd_ckpt, h)
        checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config)
        shared.opts.data['sd_model_checkpoint'] = title
    elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
        print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
    for filename in model_list:
        h = model_hash(filename)
        title, short_model_name = modeltitle(filename, h)

        basename, _ = os.path.splitext(filename)
        config = basename + ".yaml"
        if not os.path.exists(config):
            config = shared.cmd_opts.config

        checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config)


def get_closet_checkpoint_match(searchString):
    applicable = sorted([info for info in checkpoints_list.values() if searchString in info.title], key = lambda x:len(x.title))
    if len(applicable) > 0:
        return applicable[0]
    return None


def model_hash(filename):
    try:
        with open(filename, "rb") as file:
            import hashlib
            m = hashlib.sha256()

            file.seek(0x100000)
            m.update(file.read(0x10000))
            return m.hexdigest()[0:8]
    except FileNotFoundError:
        return 'NOFILE'


def select_checkpoint():
    model_checkpoint = shared.opts.sd_model_checkpoint
    checkpoint_info = checkpoints_list.get(model_checkpoint, None)
    if checkpoint_info is not None:
        return checkpoint_info

    if len(checkpoints_list) == 0:
        print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
        if shared.cmd_opts.ckpt is not None:
            print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
        print(f" - directory {model_path}", file=sys.stderr)
        if shared.cmd_opts.ckpt_dir is not None:
            print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
        print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
        exit(1)

    checkpoint_info = next(iter(checkpoints_list.values()))
    if model_checkpoint is not None:
        print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr)

    return checkpoint_info


def get_state_dict_from_checkpoint(pl_sd):
    if "state_dict" in pl_sd:
        return pl_sd["state_dict"]

    return pl_sd


def load_model_weights(model, checkpoint_info):
    checkpoint_file = checkpoint_info.filename
    sd_model_hash = checkpoint_info.hash

    print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")

    pl_sd = torch.load(checkpoint_file, map_location="cpu")
    if "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")

    sd = get_state_dict_from_checkpoint(pl_sd)

    model.load_state_dict(sd, strict=False)

    if shared.cmd_opts.opt_channelslast:
        model.to(memory_format=torch.channels_last)

    if not shared.cmd_opts.no_half:
        model.half()

    devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
    devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16

    vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt"

    if not os.path.exists(vae_file) and shared.cmd_opts.vae_path is not None:
        vae_file = shared.cmd_opts.vae_path

    if os.path.exists(vae_file):
        print(f"Loading VAE weights from: {vae_file}")
        vae_ckpt = torch.load(vae_file, map_location="cpu")
        vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"}

        model.first_stage_model.load_state_dict(vae_dict)

    model.first_stage_model.to(devices.dtype_vae)

    model.sd_model_hash = sd_model_hash
    model.sd_model_checkpoint = checkpoint_file
    model.sd_checkpoint_info = checkpoint_info


def load_model():
    from modules import lowvram, sd_hijack
    checkpoint_info = select_checkpoint()

    if checkpoint_info.config != shared.cmd_opts.config:
        print(f"Loading config from: {checkpoint_info.config}")

    sd_config = OmegaConf.load(checkpoint_info.config)
    sd_model = instantiate_from_config(sd_config.model)
    load_model_weights(sd_model, checkpoint_info)

    if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
        lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
    else:
        sd_model.to(shared.device)

    sd_hijack.model_hijack.hijack(sd_model)

    sd_model.eval()

    print(f"Model loaded.")
    return sd_model


def reload_model_weights(sd_model, info=None):
    from modules import lowvram, devices, sd_hijack
    checkpoint_info = info or select_checkpoint()

    if sd_model.sd_model_checkpoint == checkpoint_info.filename:
        return

    if sd_model.sd_checkpoint_info.config != checkpoint_info.config:
        shared.sd_model = load_model()
        return shared.sd_model

    if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
        lowvram.send_everything_to_cpu()
    else:
        sd_model.to(devices.cpu)

    sd_hijack.model_hijack.undo_hijack(sd_model)

    load_model_weights(sd_model, checkpoint_info)

    sd_hijack.model_hijack.hijack(sd_model)

    if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
        sd_model.to(devices.device)

    print(f"Weights loaded.")
    return sd_model