File size: 6,409 Bytes
e0c66e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import contextlib
import os
import sys
import traceback
from collections import namedtuple
import re

import torch

from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode

import modules.shared as shared
from modules import devices, paths, lowvram

blip_image_eval_size = 384
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
clip_model_name = 'ViT-L/14'

Category = namedtuple("Category", ["name", "topn", "items"])

re_topn = re.compile(r"\.top(\d+)\.")


class InterrogateModels:
    blip_model = None
    clip_model = None
    clip_preprocess = None
    categories = None
    dtype = None

    def __init__(self, content_dir):
        self.categories = []

        if os.path.exists(content_dir):
            for filename in os.listdir(content_dir):
                m = re_topn.search(filename)
                topn = 1 if m is None else int(m.group(1))

                with open(os.path.join(content_dir, filename), "r", encoding="utf8") as file:
                    lines = [x.strip() for x in file.readlines()]

                self.categories.append(Category(name=filename, topn=topn, items=lines))

    def load_blip_model(self):
        import models.blip

        blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
        blip_model.eval()

        return blip_model

    def load_clip_model(self):
        import clip

        model, preprocess = clip.load(clip_model_name)
        model.eval()
        model = model.to(shared.device)

        return model, preprocess

    def load(self):
        if self.blip_model is None:
            self.blip_model = self.load_blip_model()
            if not shared.cmd_opts.no_half:
                self.blip_model = self.blip_model.half()

        self.blip_model = self.blip_model.to(shared.device)

        if self.clip_model is None:
            self.clip_model, self.clip_preprocess = self.load_clip_model()
            if not shared.cmd_opts.no_half:
                self.clip_model = self.clip_model.half()

        self.clip_model = self.clip_model.to(shared.device)

        self.dtype = next(self.clip_model.parameters()).dtype

    def send_clip_to_ram(self):
        if not shared.opts.interrogate_keep_models_in_memory:
            if self.clip_model is not None:
                self.clip_model = self.clip_model.to(devices.cpu)

    def send_blip_to_ram(self):
        if not shared.opts.interrogate_keep_models_in_memory:
            if self.blip_model is not None:
                self.blip_model = self.blip_model.to(devices.cpu)

    def unload(self):
        self.send_clip_to_ram()
        self.send_blip_to_ram()

        devices.torch_gc()

    def rank(self, image_features, text_array, top_count=1):
        import clip

        if shared.opts.interrogate_clip_dict_limit != 0:
            text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]

        top_count = min(top_count, len(text_array))
        text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(shared.device)
        text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
        text_features /= text_features.norm(dim=-1, keepdim=True)

        similarity = torch.zeros((1, len(text_array))).to(shared.device)
        for i in range(image_features.shape[0]):
            similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
        similarity /= image_features.shape[0]

        top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
        return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]

    def generate_caption(self, pil_image):
        gpu_image = transforms.Compose([
            transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
            transforms.ToTensor(),
            transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
        ])(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)

        with torch.no_grad():
            caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)

        return caption[0]

    def interrogate(self, pil_image, include_ranks=False):
        res = None

        try:

            if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
                lowvram.send_everything_to_cpu()
                devices.torch_gc()

            self.load()

            caption = self.generate_caption(pil_image)
            self.send_blip_to_ram()
            devices.torch_gc()

            res = caption

            clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)

            precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
            with torch.no_grad(), precision_scope("cuda"):
                image_features = self.clip_model.encode_image(clip_image).type(self.dtype)

                image_features /= image_features.norm(dim=-1, keepdim=True)

                if shared.opts.interrogate_use_builtin_artists:
                    artist = self.rank(image_features, ["by " + artist.name for artist in shared.artist_db.artists])[0]

                    res += ", " + artist[0]

                for name, topn, items in self.categories:
                    matches = self.rank(image_features, items, top_count=topn)
                    for match, score in matches:
                        if include_ranks:
                            res += ", " + match
                        else:
                            res += f", ({match}:{score})"

        except Exception:
            print(f"Error interrogating", file=sys.stderr)
            print(traceback.format_exc(), file=sys.stderr)
            res += "<error>"

        self.unload()

        return res