File size: 9,118 Bytes
e0c66e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import math
import os

import numpy as np
from PIL import Image

import torch
import tqdm

from modules import processing, shared, images, devices, sd_models
from modules.shared import opts
import modules.gfpgan_model
from modules.ui import plaintext_to_html
import modules.codeformer_model
import piexif
import piexif.helper
import gradio as gr


cached_images = {}


def run_extras(extras_mode, resize_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
    devices.torch_gc()

    imageArr = []
    # Also keep track of original file names
    imageNameArr = []

    if extras_mode == 1:
        #convert file to pillow image
        for img in image_folder:
            image = Image.open(img)
            imageArr.append(image)
            imageNameArr.append(os.path.splitext(img.orig_name)[0])
    else:
        imageArr.append(image)
        imageNameArr.append(None)

    outpath = opts.outdir_samples or opts.outdir_extras_samples

    outputs = []
    for image, image_name in zip(imageArr, imageNameArr):
        if image is None:
            return outputs, "Please select an input image.", ''
        existing_pnginfo = image.info or {}

        image = image.convert("RGB")
        info = ""

        if gfpgan_visibility > 0:
            restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
            res = Image.fromarray(restored_img)

            if gfpgan_visibility < 1.0:
                res = Image.blend(image, res, gfpgan_visibility)

            info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
            image = res

        if codeformer_visibility > 0:
            restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
            res = Image.fromarray(restored_img)

            if codeformer_visibility < 1.0:
                res = Image.blend(image, res, codeformer_visibility)

            info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
            image = res

        if resize_mode == 1:
            upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
            crop_info = " (crop)" if upscaling_crop else ""
            info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"

        if upscaling_resize != 1.0:
            def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
                small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
                pixels = tuple(np.array(small).flatten().tolist())
                key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight) + pixels

                c = cached_images.get(key)
                if c is None:
                    upscaler = shared.sd_upscalers[scaler_index]
                    c = upscaler.scaler.upscale(image, resize, upscaler.data_path)
                    if mode == 1 and crop:
                        cropped = Image.new("RGB", (resize_w, resize_h))
                        cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2))
                        c = cropped
                    cached_images[key] = c

                return c

            info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
            res = upscale(image, extras_upscaler_1, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)

            if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
                res2 = upscale(image, extras_upscaler_2, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
                info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
                res = Image.blend(res, res2, extras_upscaler_2_visibility)

            image = res

        while len(cached_images) > 2:
            del cached_images[next(iter(cached_images.keys()))]

        images.save_image(image, path=outpath, basename="", seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
                          no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo,
                          forced_filename=image_name if opts.use_original_name_batch else None)

        if opts.enable_pnginfo:
            image.info = existing_pnginfo
            image.info["extras"] = info

        outputs.append(image)

    devices.torch_gc()

    return outputs, plaintext_to_html(info), ''


def run_pnginfo(image):
    if image is None:
        return '', '', ''

    items = image.info
    geninfo = ''

    if "exif" in image.info:
        exif = piexif.load(image.info["exif"])
        exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
        try:
            exif_comment = piexif.helper.UserComment.load(exif_comment)
        except ValueError:
            exif_comment = exif_comment.decode('utf8', errors="ignore")

        items['exif comment'] = exif_comment
        geninfo = exif_comment

        for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
                      'loop', 'background', 'timestamp', 'duration']:
            items.pop(field, None)

    geninfo = items.get('parameters', geninfo)

    info = ''
    for key, text in items.items():
        info += f"""

<div>

<p><b>{plaintext_to_html(str(key))}</b></p>

<p>{plaintext_to_html(str(text))}</p>

</div>

""".strip()+"\n"

    if len(info) == 0:
        message = "Nothing found in the image."
        info = f"<div><p>{message}<p></div>"

    return '', geninfo, info


def run_modelmerger(primary_model_name, secondary_model_name, interp_method, interp_amount, save_as_half, custom_name):
    # Linear interpolation (https://en.wikipedia.org/wiki/Linear_interpolation)
    def weighted_sum(theta0, theta1, alpha):
        return ((1 - alpha) * theta0) + (alpha * theta1)

    # Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
    def sigmoid(theta0, theta1, alpha):
        alpha = alpha * alpha * (3 - (2 * alpha))
        return theta0 + ((theta1 - theta0) * alpha)

    # Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
    def inv_sigmoid(theta0, theta1, alpha):
        import math
        alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
        return theta0 + ((theta1 - theta0) * alpha)

    primary_model_info = sd_models.checkpoints_list[primary_model_name]
    secondary_model_info = sd_models.checkpoints_list[secondary_model_name]

    print(f"Loading {primary_model_info.filename}...")
    primary_model = torch.load(primary_model_info.filename, map_location='cpu')

    print(f"Loading {secondary_model_info.filename}...")
    secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')

    theta_0 = sd_models.get_state_dict_from_checkpoint(primary_model)
    theta_1 = sd_models.get_state_dict_from_checkpoint(secondary_model)

    theta_funcs = {
        "Weighted Sum": weighted_sum,
        "Sigmoid": sigmoid,
        "Inverse Sigmoid": inv_sigmoid,
    }
    theta_func = theta_funcs[interp_method]

    print(f"Merging...")
    for key in tqdm.tqdm(theta_0.keys()):
        if 'model' in key and key in theta_1:
            theta_0[key] = theta_func(theta_0[key], theta_1[key], (float(1.0) - interp_amount))  # Need to reverse the interp_amount to match the desired mix ration in the merged checkpoint
            if save_as_half:
                theta_0[key] = theta_0[key].half()

    for key in theta_1.keys():
        if 'model' in key and key not in theta_0:
            theta_0[key] = theta_1[key]
            if save_as_half:
                theta_0[key] = theta_0[key].half()

    ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path

    filename = primary_model_info.model_name + '_' + str(round(interp_amount, 2)) + '-' + secondary_model_info.model_name + '_' + str(round((float(1.0) - interp_amount), 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
    filename = filename if custom_name == '' else (custom_name + '.ckpt')
    output_modelname = os.path.join(ckpt_dir, filename)

    print(f"Saving to {output_modelname}...")
    torch.save(primary_model, output_modelname)

    sd_models.list_models()

    print(f"Checkpoint saved.")
    return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(3)]