File size: 21,611 Bytes
b9a0f21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
# Deploying Bokeh Apps


```python
import numpy as np
import holoviews as hv
hv.extension('bokeh')
```

## Purpose

HoloViews is an incredibly convenient way of working interactively and exploratively within a notebook or commandline context. However, once you have implemented a polished interactive dashboard or some other complex interactive visualization, you will often want to deploy it outside the notebook to share with others who may not be comfortable with the notebook interface. 

In the simplest case, to visualize some HoloViews container or element `obj`, you can export it to a standalone HTML file for sharing using the `save` function of the Bokeh renderer:

```
hv.save(obj, 'out.html')
```

This command will generate a file `out.html` that you can put on any web server, email directly to colleagues, etc.; it is fully self-contained and does not require any Python server to be installed or running.  

Unfortunately, a static approach like this cannot support any HoloViews object that uses DynamicMap (either directly or via operations that return DynamicMaps like `decimate`, `datashade`, and `rasterize`).  Anything with DynamicMap requires a live, running Python server to dynamically select and provide the data for the various parameters that can be selected by the user. Luckily, when you need a live Python process during the visualization, the [Bokeh server](http://bokeh.pydata.org/en/latest/docs/user_guide/server.html) provides a very convenient way of deploying HoloViews plots and interactive dashboards in a scalable and flexible manner. The Bokeh server allows all the usual interactions that HoloViews lets you define and more including:

* responding to plot events and tool interactions via [Linked Streams](./13-Custom_Interactivity.ipynb)
* generating and interacting with plots via the usual widgets that HoloViews supports for HoloMap and DynamicMap objects.
* using periodic and timeout events to drive plot updates
* combining HoloViews plots with custom Bokeh plots to quickly write highly customized apps.

## Overview

In this guide we will cover how we can deploy a Bokeh app from a HoloViews plot in a number of different ways:

1. Inline from within the Jupyter notebook

2. Starting a server interactively and open it in a new browser window.

3. From a standalone script file

4. Combining HoloViews and Bokeh models to create a more customized app

If you have read a bit about HoloViews you will know that HoloViews objects are not themselves plots, instead they contain sufficient data and metadata allowing them to be rendered automatically in a notebook context. In other words, when a HoloViews object is evaluated a backend specific ``Renderer`` converts the HoloViews object into Bokeh models, a Matplotlib figure or a Plotly graph. This intermediate representation is then rendered as an image or as HTML with associated Javascript, which is what ends up being displayed.

## The workflow

The most convenient way to work with HoloViews is to iteratively improve a visualization in the notebook. Once you have developed a visualization or dashboard that you would like to deploy you can use the ``BokehRenderer`` to export the visualization as illustrated above, or you can deploy it as a Bokeh server app. 

Here we will create a small interactive plot, using [Linked Streams](./13-Custom_Interactivity.ipynb), which mirrors the points selected using box- and lasso-select tools in a second plot and computes some statistics:


```python
# Declare some points
points = hv.Points(np.random.randn(1000,2 ))

# Declare points as source of selection stream
selection = hv.streams.Selection1D(source=points)

# Write function that uses the selection indices to slice points and compute stats
def selected_info(index):
    arr = points.array()[index]
    if index:
        label = 'Mean x, y: %.3f, %.3f' % tuple(arr.mean(axis=0))
    else:
        label = 'No selection'
    return points.clone(arr, label=label).opts(color='red')

# Combine points and DynamicMap
selected_points = hv.DynamicMap(selected_info, streams=[selection])
layout = points.opts(tools=['box_select', 'lasso_select']) + selected_points

layout
```

<img src='https://assets.holoviews.org/gifs/examples/streams/bokeh/point_selection1d.gif'></img>

#### Working with the BokehRenderer

When working with Bokeh server or wanting to manipulate a backend specific plot object you will have to use a HoloViews ``Renderer`` directly to convert the HoloViews object into the backend specific representation. Therefore we will start by getting a hold of a ``BokehRenderer``:


```python
renderer = hv.renderer('bokeh')
print(renderer)
```

```python
BokehRenderer()
```

All ``Renderer`` classes in HoloViews are so called ParameterizedFunctions; they provide both classmethods and instance methods to render an object. You can easily create a new ``Renderer`` instance using the ``.instance`` method:


```python
renderer = renderer.instance(mode='server')
```

Renderers can also have different modes. In this case we will instantiate the renderer in ``'server'`` mode, which tells the Renderer to render the HoloViews object to a format that can easily be deployed as a server app. Before going into more detail about deploying server apps we will quickly remind ourselves how the renderer turns HoloViews objects into Bokeh models.

### Figures

The BokehRenderer converts the HoloViews object to a HoloViews ``Plot``, which holds the Bokeh models that will be rendered to screen. As a very simple example we can convert a HoloViews ``Image`` to a HoloViews plot:


```python
plot = renderer.get_plot(layout)
print(plot)
```

```
<LayoutPlot LayoutPlot01811>
```

Using the ``state`` attribute on the HoloViews plot we can access the Bokeh ``Column`` model, which we can then work with directly.


```python
plot.state
```

**Column**(id='1570', ...)

In the background this is how HoloViews converts any HoloViews object into Bokeh models, which can then be converted to embeddable or standalone HTML and be rendered in the browser. This conversion is usually done in the background using the ``figure_data`` method:


```python
html = renderer._figure_data(plot, 'html')
```

### Bokeh Documents

In Bokeh the [``Document``](http://bokeh.pydata.org/en/latest/docs/reference/document.html) is the basic unit at which Bokeh models (such as plots, layouts and widgets) are held and serialized. The serialized JSON representation is then sent to BokehJS on the client-side browser. When in ``'server'`` mode the BokehRenderer will automatically return a server Document:


```python
renderer(layout)
```

```
(<bokeh.document.Document at 0x11afc7590>,
 {'file-ext': 'html', 'mime_type': u'text/html'})
```

We can also easily use the ``server_doc`` method to get a Bokeh ``Document``, which does not require you to make an instance in 'server' mode.


```python
doc = renderer.server_doc(layout)
doc.title = 'HoloViews App'
```

In the background however, HoloViews uses the Panel library to render components to a Bokeh model which can be rendered in the notebook, to a file or on a server:


```python
import panel as pn

model = pn.panel(layout).get_root()
model
```

For more information on the interaction between Panel and HoloViews see the the [Panel documentation](https://panel.holoviz.org/reference/panes/HoloViews.html).

## Deploying with ``panel serve``

Deployment from a script with `panel serve` is one of the most common ways to deploy a Bokeh app. Any ``.py`` or ``.ipynb`` file that attaches a plot to Bokeh's ``curdoc`` can be deployed using ``panel serve``. The easiest way to do this is using wrapping the HoloViews component in Panel using ``pn.panel(hvobj)`` and then calling the ``panel_obj.servable()`` method, which accepts any HoloViews object ensures that the plot is discoverable by Panel and the underlying Bokeh server. See below to see a full standalone script:

```python
import numpy as np
import panel as pn
import holoviews as hv
import holoviews.plotting.bokeh

points = hv.Points(np.random.randn(1000,2 )).opts(tools=['box_select', 'lasso_select'])
selection = hv.streams.Selection1D(source=points)

def selected_info(index):
    arr = points.array()[index]
    if index:
        label = 'Mean x, y: %.3f, %.3f' % tuple(arr.mean(axis=0))
    else:
        label = 'No selection'
    return points.clone(arr, label=label).opts(color='red')

layout = points + hv.DynamicMap(selected_info, streams=[selection])

pn.panel(layout).servable(title='HoloViews App')
```

In just a few steps we can iteratively refine in the notebook to a deployable Panel app. Note also that we can also deploy an app directly from a notebook. By using `.servable()` in a notebook any regular ``.ipynb`` file can be made into a valid Panel/Bokeh app, which can be served with ``panel serve example.ipynb``.

It is also possible to create a Bokeh `Document` more directly working with the underlying Bokeh representation instead. This in itself is sufficient to make the plot servable using `bokeh serve`:


```python
hv.renderer('bokeh').server_doc(layout)
```

In addition to starting a server from a script we can also start up a server interactively, so let's do a quick deep dive into Bokeh ``Application`` and ``Server`` objects and how we can work with them from within HoloViews.

## Bokeh Server

To start a Bokeh server directly from a notebook we can also use Panel, specifically we'll use the `panel.serve` function. We'll define a ``DynamicMap`` of a sine ``Curve`` varying by frequency, phase and an offset and then create a server instance using Panel:


```python
def sine(frequency, phase, amplitude):
    xs = np.linspace(0, np.pi*4)
    return hv.Curve((xs, np.sin(frequency*xs+phase)*amplitude)).opts(width=800)

ranges = dict(frequency=(1, 5), phase=(-np.pi, np.pi), amplitude=(-2, 2), y=(-2, 2))
dmap = hv.DynamicMap(sine, kdims=['frequency', 'phase', 'amplitude']).redim.range(**ranges)

server = pn.serve(dmap, start=False, show=False)
```

```
<bokeh.server.server.Server object at 0x10b3a0510>
```

Next we can define a callback on the IOLoop that will open the server app in a new browser window and actually start the app (and if outside the notebook the IOLoop):


```python
server.start()
server.show('/')

# Outside the notebook ioloop needs to be started
# from tornado.ioloop import IOLoop
# loop = IOLoop.current()
# loop.start() 
```

After running the cell above you should have noticed a new browser window popping up displaying our plot. Once you are done playing with it you can stop it with:


```python
server.stop()
```

We can achieve the equivalent using the `.show` method on a Panel object:


```python
server = pn.panel(dmap).show()
```

<img width='80%' src="https://assets.holoviews.org/gifs/guides/user_guide/Deploying_Bokeh_Apps/bokeh_server_new_window.png"></img>

We will once again stop this Server before continuing:


```python
server.stop()
```

## Inlining apps in the notebook

Instead of displaying our app in a new browser window we can also display an app inline in the notebook simply by using the `.app` method on Panel object. The server app will be killed whenever you rerun or delete the cell that contains the output. Additionally, if your Jupyter Notebook server is not running on the default address or port (``localhost:8888``) supply the websocket origin, which should match the first part of the URL of your notebook:


```python
dmap
```

<img width='80%' src='https://assets.holoviews.org/gifs/guides/user_guide/Deploying_Bokeh_Apps/bokeh_server_inline_simple.gif'></img>

## Periodic callbacks

One of the most important features of deploying apps is the ability to attach asynchronous, periodic callbacks, which update the plot. The simplest way of achieving this is to attach a ``Counter`` stream on the plot which is incremented on each callback. As a simple demo we'll simply compute a phase offset from the counter value, animating the sine wave:


```python
def sine(counter):
    phase = counter*0.1%np.pi*2
    xs = np.linspace(0, np.pi*4)
    return hv.Curve((xs, np.sin(xs+phase))).opts(width=800)

counter = hv.streams.Counter()
hv.DynamicMap(sine, streams=[counter])

dmap
```

<img width='80%' src='https://assets.holoviews.org/gifs/guides/user_guide/Deploying_Bokeh_Apps/bokeh_server_periodic.gif'></img>

Once we have created a Panel object we can call the `add_periodic_callback` method to set up a periodic callback. The first argument to the method is the callback and the second argument period specified in milliseconds. As soon as we start this callback you should see the Curve above become animated.


```python
def update():
    counter.event(counter=counter.counter+1)

cb = pn.state.add_periodic_callback(update, period=200)
```

Once started we can stop and start it at will using the `.stop` and `.start` methods:


```python
cb.stop()
```

## Combining Bokeh Application and Flask Application

While Panel and Bokeh are great ways to create an application often we want to leverage the simplicity of a Flask server. With Flask we can easily embed a HoloViews, Bokeh and Panel application in a regular website. The main idea for getting Bokeh and Flask to work together is to run both apps on ports and then use Flask to pull the Bokeh Serve session with `pull_session` from [bokeh.client.session](https://bokeh.pydata.org/en/latest/docs/reference/client/session.html). 


```python
def sine(frequency, phase, amplitude):
    xs = np.linspace(0, np.pi*4)
    return hv.Curve((xs, np.sin(frequency*xs+phase)*amplitude)).options(width=800)

ranges = dict(frequency=(1, 5), phase=(-np.pi, np.pi), amplitude=(-2, 2), y=(-2, 2))
dmap = hv.DynamicMap(sine, kdims=['frequency', 'phase', 'amplitude']).redim.range(**ranges)

pn.serve(dmap, websocket_origin='localhost:5000', port=5006, show=False)
```

We run load up our dynamic map into a Bokeh Application with the parameter `allow_websocket_origin=["localhost:5000"]`

```python
from bokeh.client import pull_session
from bokeh.embed import server_session
from flask import Flask, render_template
from flask import send_from_directory

app = Flask(__name__)


# locally creates a page
@app.route('/')
def index():
    with pull_session(url="http://localhost:5006/") as session:
        # generate a script to load the customized session
        script = server_session(session_id=session.id, url='http://localhost:5006')
        # use the script in the rendered page
    return render_template("embed.html", script=script, template="Flask")

if __name__ == '__main__':
    # runs app in debug mode
    app.run(port=5000, debug=True)
```

Note that in a notebook context we cannot use `pull_session` but this example demonstrates how we can embed the Bokeh server inside a simple flask app.

This is an example of a basic flask app. To find out more about Flask a tutorial can be found on the [Flask Quickstart Guide](http://flask.pocoo.org/docs/1.0/quickstart/#). 



Below is an example of a basic Flask App that pulls from the Bokeh Application. The Bokeh Application is using `Server` from Bokeh and `IOLoop` from tornado to run the app. 

```python
# holoviews.py

import holoviews as hv
import panel as pn
import numpy as np

hv.extension('bokeh')

def sine(frequency, phase, amplitude):
    xs = np.linspace(0, np.pi*4)
    return hv.Curve((xs, np.sin(frequency*xs+phase)*amplitude)).options(width=800)

if __name__ == '__main__':
    ranges = dict(frequency=(1, 5), phase=(-np.pi, np.pi), amplitude=(-2, 2), y=(-2, 2))
    dmap = hv.DynamicMap(sine, kdims=['frequency', 'phase', 'amplitude']).redim.range(**ranges)
    pn.serve(dmap, port=5006, allow_websocket_origin=["localhost:5000"], show=False)
```

```python
#flaskApp.py

from bokeh.client import pull_session
from bokeh.embed import server_session
from flask import Flask, render_template
from flask import send_from_directory

app = Flask(__name__)

# locally creates a page
@app.route('/')
def index():
    with pull_session(url="http://localhost:5006/") as session:
            # generate a script to load the customized session
            script = server_session(session_id=session.id, url='http://localhost:5006')
            # use the script in the rendered page
    return render_template("embed.html", script=script, template="Flask")


if __name__ == '__main__':
    # runs app in debug mode
    app.run(port=5000, debug=True)
```

```html
<!-- embed.html -->

<!doctype html>

<html lang="en">
<head>
  <meta charset="utf-8">
  <title>Embedding a Bokeh Server With Flask</title>
</head>

<body>
  <div>
    This Bokeh app below served by a Bokeh server that has been embedded
    in another web app framework. For more information see the section
    <a  target="_blank" href="https://bokeh.pydata.org/en/latest/docs/user_guide/server.html#embedding-bokeh-server-as-a-library">Embedding Bokeh Server as a Library</a>
    in the User's Guide.
  </div>
  {{ script|safe }}
</body>
</html>
```

If you wish to replicate navigate to the `examples/gallery/apps/flask` directory and follow the these steps:

* Step One: call `python holoviews_app.py` in the terminal (this will start the Panel/Bokeh server)
* Step Two: open a new terminal and call `python flask_app.py` (this will start the Flask application)
* Step Three: go to web browser and type `localhost:5000` and the app will appear

## Combining HoloViews and Panel or Bokeh Plots/Widgets

While HoloViews provides very convenient ways of creating an app it is not as fully featured as Bokeh itself is. Therefore we often want to extend a HoloViews based app with Panel or Bokeh plots and widgets. Here we will discover to achieve this with both Panel and then the equivalent using pure Bokeh.


```python
import holoviews as hv
import numpy as np
import panel as pn

# Create the holoviews app again
def sine(phase):
    xs = np.linspace(0, np.pi*4)
    return hv.Curve((xs, np.sin(xs+phase))).opts(width=800)

stream = hv.streams.Stream.define('Phase', phase=0.)()
dmap = hv.DynamicMap(sine, streams=[stream])

start, end = 0, np.pi*2
slider = pn.widgets.FloatSlider(start=start, end=end, value=start, step=0.2, name="Phase")

# Create a slider and play buttons
def animate_update():
    year = slider.value + 0.2
    if year > end:
        year = start
    slider.value = year

def slider_update(event):
    # Notify the HoloViews stream of the slider update 
    stream.event(phase=event.new)

slider.param.watch(slider_update, 'value')

def animate(event):
    if button.name == '► Play':
        button.name = '❚❚ Pause'
        callback.start()
    else:
        button.name = '► Play'
        callback.stop()

button = pn.widgets.Button(name='► Play', width=60, align='end')
button.on_click(animate)
callback = pn.state.add_periodic_callback(animate_update, 50, start=False)

app = pn.Column(
    dmap,
    pn.Row(slider, button)
)

app
```

If instead we want to deploy this we could add `.servable` as discussed before or use `pn.serve`. Note however that when using `pn.serve` all sessions will share the same state therefore it is best to 
wrap the creation of the app in a function which we can then provide to `pn.serve`. For more detail on deploying Panel applications also see the [Panel server deployment guide](https://panel.holoviz.org/user_guide/Server_Deployment.html).

Now we can reimplement the same example using Bokeh allowing us to compare and contrast the approaches:


```python
import numpy as np
import holoviews as hv

from bokeh.io import show, curdoc
from bokeh.layouts import layout
from bokeh.models import Slider, Button

renderer = hv.renderer('bokeh').instance(mode='server')

# Create the holoviews app again
def sine(phase):
    xs = np.linspace(0, np.pi*4)
    return hv.Curve((xs, np.sin(xs+phase))).opts(width=800)

stream = hv.streams.Stream.define('Phase', phase=0.)()
dmap = hv.DynamicMap(sine, streams=[stream])

# Define valid function for FunctionHandler
# when deploying as script, simply attach to curdoc
def modify_doc(doc):
    # Create HoloViews plot and attach the document
    hvplot = renderer.get_plot(dmap, doc)

    # Create a slider and play buttons
    def animate_update():
        year = slider.value + 0.2
        if year > end:
            year = start
        slider.value = year

    def slider_update(attrname, old, new):
        # Notify the HoloViews stream of the slider update 
        stream.event(phase=new)
        
    start, end = 0, np.pi*2
    slider = Slider(start=start, end=end, value=start, step=0.2, title="Phase")
    slider.on_change('value', slider_update)
    
    callback_id = None

    def animate():
        global callback_id
        if button.label == '► Play':
            button.label = '❚❚ Pause'
            callback_id = doc.add_periodic_callback(animate_update, 50)
        else:
            button.label = '► Play'
            doc.remove_periodic_callback(callback_id)
    button = Button(label='► Play', width=60)
    button.on_click(animate)
    
    # Combine the holoviews plot and widgets in a layout
    plot = layout([
    [hvplot.state],
    [slider, button]], sizing_mode='fixed')
    
    doc.add_root(plot)
    return doc

# To display in the notebook
show(modify_doc, notebook_url='localhost:8888')

# To display in a script
#    doc = modify_doc(curdoc()) 
```

<img width='80%' src='https://assets.holoviews.org/gifs/guides/user_guide/Deploying_Bokeh_Apps/bokeh_server_play.gif'></img>

As you can see depending on your needs you have complete freedom whether to use just HoloViews and deploy your application, combine it Panel or even with pure Bokeh.