File size: 4,179 Bytes
d6d2c2a
bd94aa2
 
 
 
 
 
 
 
 
 
 
5cf7dee
d6d2c2a
bd94aa2
 
 
 
d6d2c2a
 
ee55332
bd94aa2
d6d2c2a
 
ee55332
d6d2c2a
 
 
 
 
 
 
bd94aa2
 
4fd0935
bd94aa2
 
 
 
d6d2c2a
 
5cf7dee
d6d2c2a
 
bd94aa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845eacd
d6d2c2a
 
 
845eacd
60d26fc
5cf7dee
 
 
60d26fc
 
 
 
 
 
bd94aa2
 
 
 
 
 
 
 
 
845eacd
 
 
 
d6d2c2a
bd94aa2
d6d2c2a
 
 
bd94aa2
 
60d26fc
bd94aa2
 
845eacd
 
bd94aa2
60d26fc
 
 
 
 
 
bd94aa2
 
 
 
 
 
 
 
 
 
 
 
 
d6d2c2a
 
bd94aa2
d6d2c2a
 
 
bd94aa2
d6d2c2a
 
bd94aa2
 
60d26fc
bd94aa2
 
 
845eacd
 
bd94aa2
60d26fc
 
 
 
 
 
bd94aa2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from fastapi import FastAPI, Request, UploadFile, Form, File
from fastapi.responses import StreamingResponse
from contextlib import asynccontextmanager
from starlette.middleware.cors import CORSMiddleware

from PIL import Image
from io import BytesIO
from diffusers import (
    AutoPipelineForText2Image,
    AutoPipelineForImage2Image,
    AutoPipelineForInpainting,
)
from transformers import CLIPFeatureExtractor
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker


@asynccontextmanager
async def lifespan(app: FastAPI):
    feature_extractor = CLIPFeatureExtractor.from_pretrained(
        "openai/clip-vit-base-patch32"
    )

    safety_checker = StableDiffusionSafetyChecker.from_pretrained(
        "CompVis/stable-diffusion-safety-checker"
    )

    text2img = AutoPipelineForText2Image.from_pretrained(
        "stabilityai/sd-turbo",
        safety_checker=safety_checker,
        feature_extractor=feature_extractor,
    ).to("cpu")

    img2img = AutoPipelineForImage2Image.from_pipe(text2img).to("cpu")

    inpaint = AutoPipelineForInpainting.from_pipe(img2img).to("cpu")

    yield {"text2img": text2img, "img2img": img2img, "inpaint": inpaint}

    del inpaint
    del img2img
    del text2img

    del safety_checker
    del feature_extractor


app = FastAPI(lifespan=lifespan)

origins = ["*"]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


@app.get("/")
async def root():
    return {"Hello": "World"}


@app.post("/text-to-image/")
async def text_to_image(
    request: Request,
    prompt: str = Form(...),
    num_inference_steps: int = Form(1),
):
    results = request.state.text2img(
        prompt=prompt,
        num_inference_steps=num_inference_steps,
        guidance_scale=0.0,
    )

    if not results.nsfw_content_detected[0]:
        image = results.images[0]
    else:
        image = Image.new("RGB", (512, 512), "black")

    bytes = BytesIO()
    image.save(bytes, "PNG")
    bytes.seek(0)
    return StreamingResponse(bytes, media_type="image/png")


@app.post("/image-to-image/")
async def image_to_image(
    request: Request,
    prompt: str = Form(...),
    init_image: UploadFile = File(...),
    num_inference_steps: int = Form(2),
    strength: float = Form(1.0),
):
    init_bytes = await init_image.read()
    init_image = Image.open(BytesIO(init_bytes))
    init_width, init_height = init_image.size
    init_image = init_image.convert("RGB").resize((512, 512))

    results = request.state.img2img(
        prompt,
        image=init_image,
        num_inference_steps=num_inference_steps,
        strength=strength,
        guidance_scale=0.0,
    )

    if not results.nsfw_content_detected[0]:
        image = results.images[0].resize((init_width, init_height))
    else:
        image = Image.new("RGB", (512, 512), "black")

    bytes = BytesIO()
    image.save(bytes, "PNG")
    bytes.seek(0)
    return StreamingResponse(bytes, media_type="image/png")


@app.post("/inpainting/")
async def inpainting(
    request: Request,
    prompt: str = Form(...),
    init_image: UploadFile = File(...),
    mask_image: UploadFile = File(...),
    num_inference_steps: int = Form(2),
    strength: float = Form(1.0),
):
    init_bytes = await init_image.read()
    init_image = Image.open(BytesIO(init_bytes))
    init_width, init_height = init_image.size
    init_image = init_image.convert("RGB").resize((512, 512))
    mask_bytes = await mask_image.read()
    mask_image = Image.open(BytesIO(mask_bytes))
    mask_image = mask_image.convert("RGB").resize((512, 512))

    results = request.state.inpaint(
        prompt,
        image=init_image,
        mask_image=mask_image,
        num_inference_steps=num_inference_steps,
        strength=strength,
        guidance_scale=0.0,
    )

    if not results.nsfw_content_detected[0]:
        image = results.images[0].resize((init_width, init_height))
    else:
        image = Image.new("RGB", (512, 512), "black")

    bytes = BytesIO()
    image.save(bytes, "PNG")
    bytes.seek(0)
    return StreamingResponse(bytes, media_type="image/png")