Spaces:
Build error
Build error
File size: 11,325 Bytes
8235b4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Authors: Eliya Nachmani (enk100), Yossi Adi (adiyoss), Lior Wolf
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from ..utils import overlap_and_add
from ..utils import capture_init
class MulCatBlock(nn.Module):
def __init__(self, input_size, hidden_size, dropout=0, bidirectional=False):
super(MulCatBlock, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_direction = int(bidirectional) + 1
self.rnn = nn.LSTM(input_size, hidden_size, 1, dropout=dropout,
batch_first=True, bidirectional=bidirectional)
self.rnn_proj = nn.Linear(hidden_size * self.num_direction, input_size)
self.gate_rnn = nn.LSTM(input_size, hidden_size, num_layers=1,
batch_first=True, dropout=dropout, bidirectional=bidirectional)
self.gate_rnn_proj = nn.Linear(
hidden_size * self.num_direction, input_size)
self.block_projection = nn.Linear(input_size * 2, input_size)
def forward(self, input):
output = input
# run rnn module
rnn_output, _ = self.rnn(output)
rnn_output = self.rnn_proj(rnn_output.contiguous(
).view(-1, rnn_output.shape[2])).view(output.shape).contiguous()
# run gate rnn module
gate_rnn_output, _ = self.gate_rnn(output)
gate_rnn_output = self.gate_rnn_proj(gate_rnn_output.contiguous(
).view(-1, gate_rnn_output.shape[2])).view(output.shape).contiguous()
# apply gated rnn
gated_output = torch.mul(rnn_output, gate_rnn_output)
gated_output = torch.cat([gated_output, output], 2)
gated_output = self.block_projection(
gated_output.contiguous().view(-1, gated_output.shape[2])).view(output.shape)
return gated_output
class ByPass(nn.Module):
def __init__(self):
super(ByPass, self).__init__()
def forward(self, input):
return input
class DPMulCat(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_spk,
dropout=0, num_layers=1, bidirectional=True, input_normalize=False):
super(DPMulCat, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.hidden_size = hidden_size
self.in_norm = input_normalize
self.num_layers = num_layers
self.rows_grnn = nn.ModuleList([])
self.cols_grnn = nn.ModuleList([])
self.rows_normalization = nn.ModuleList([])
self.cols_normalization = nn.ModuleList([])
# create the dual path pipeline
for i in range(num_layers):
self.rows_grnn.append(MulCatBlock(
input_size, hidden_size, dropout, bidirectional=bidirectional))
self.cols_grnn.append(MulCatBlock(
input_size, hidden_size, dropout, bidirectional=bidirectional))
if self.in_norm:
self.rows_normalization.append(
nn.GroupNorm(1, input_size, eps=1e-8))
self.cols_normalization.append(
nn.GroupNorm(1, input_size, eps=1e-8))
else:
# used to disable normalization
self.rows_normalization.append(ByPass())
self.cols_normalization.append(ByPass())
self.output = nn.Sequential(
nn.PReLU(), nn.Conv2d(input_size, output_size * num_spk, 1))
def forward(self, input):
batch_size, _, d1, d2 = input.shape
output = input
output_all = []
for i in range(self.num_layers):
row_input = output.permute(0, 3, 2, 1).contiguous().view(
batch_size * d2, d1, -1)
row_output = self.rows_grnn[i](row_input)
row_output = row_output.view(
batch_size, d2, d1, -1).permute(0, 3, 2, 1).contiguous()
row_output = self.rows_normalization[i](row_output)
# apply a skip connection
if self.training:
output = output + row_output
else:
output += row_output
col_input = output.permute(0, 2, 3, 1).contiguous().view(
batch_size * d1, d2, -1)
col_output = self.cols_grnn[i](col_input)
col_output = col_output.view(
batch_size, d1, d2, -1).permute(0, 3, 1, 2).contiguous()
col_output = self.cols_normalization[i](col_output).contiguous()
# apply a skip connection
if self.training:
output = output + col_output
else:
output += col_output
output_i = self.output(output)
if self.training or i == (self.num_layers - 1):
output_all.append(output_i)
return output_all
class Separator(nn.Module):
def __init__(self, input_dim, feature_dim, hidden_dim, output_dim, num_spk=2,
layer=4, segment_size=100, input_normalize=False, bidirectional=True):
super(Separator, self).__init__()
self.input_dim = input_dim
self.feature_dim = feature_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.layer = layer
self.segment_size = segment_size
self.num_spk = num_spk
self.input_normalize = input_normalize
self.rnn_model = DPMulCat(self.feature_dim, self.hidden_dim,
self.feature_dim, self.num_spk, num_layers=layer, bidirectional=bidirectional, input_normalize=input_normalize)
# ======================================= #
# The following code block was borrowed and modified from https://github.com/yluo42/TAC
# ================ BEGIN ================ #
def pad_segment(self, input, segment_size):
# input is the features: (B, N, T)
batch_size, dim, seq_len = input.shape
segment_stride = segment_size // 2
rest = segment_size - (segment_stride + seq_len %
segment_size) % segment_size
if rest > 0:
pad = Variable(torch.zeros(batch_size, dim, rest)
).type(input.type())
input = torch.cat([input, pad], 2)
pad_aux = Variable(torch.zeros(
batch_size, dim, segment_stride)).type(input.type())
input = torch.cat([pad_aux, input, pad_aux], 2)
return input, rest
def create_chuncks(self, input, segment_size):
# split the feature into chunks of segment size
# input is the features: (B, N, T)
input, rest = self.pad_segment(input, segment_size)
batch_size, dim, seq_len = input.shape
segment_stride = segment_size // 2
segments1 = input[:, :, :-segment_stride].contiguous().view(batch_size,
dim, -1, segment_size)
segments2 = input[:, :, segment_stride:].contiguous().view(
batch_size, dim, -1, segment_size)
segments = torch.cat([segments1, segments2], 3).view(
batch_size, dim, -1, segment_size).transpose(2, 3)
return segments.contiguous(), rest
def merge_chuncks(self, input, rest):
# merge the splitted features into full utterance
# input is the features: (B, N, L, K)
batch_size, dim, segment_size, _ = input.shape
segment_stride = segment_size // 2
input = input.transpose(2, 3).contiguous().view(
batch_size, dim, -1, segment_size*2) # B, N, K, L
input1 = input[:, :, :, :segment_size].contiguous().view(
batch_size, dim, -1)[:, :, segment_stride:]
input2 = input[:, :, :, segment_size:].contiguous().view(
batch_size, dim, -1)[:, :, :-segment_stride]
output = input1 + input2
if rest > 0:
output = output[:, :, :-rest]
return output.contiguous() # B, N, T
# ================= END ================= #
def forward(self, input):
# create chunks
enc_segments, enc_rest = self.create_chuncks(
input, self.segment_size)
# separate
output_all = self.rnn_model(enc_segments)
# merge back audio files
output_all_wav = []
for ii in range(len(output_all)):
output_ii = self.merge_chuncks(
output_all[ii], enc_rest)
output_all_wav.append(output_ii)
return output_all_wav
class SWave(nn.Module):
@capture_init
def __init__(self, N, L, H, R, C, sr, segment, input_normalize):
super(SWave, self).__init__()
# hyper-parameter
self.N, self.L, self.H, self.R, self.C, self.sr, self.segment = N, L, H, R, C, sr, segment
self.input_normalize = input_normalize
self.context_len = 2 * self.sr / 1000
self.context = int(self.sr * self.context_len / 1000)
self.layer = self.R
self.filter_dim = self.context * 2 + 1
self.num_spk = self.C
# similar to dprnn paper, setting chancksize to sqrt(2*L)
self.segment_size = int(
np.sqrt(2 * self.sr * self.segment / (self.L/2)))
# model sub-networks
self.encoder = Encoder(L, N)
self.decoder = Decoder(L)
self.separator = Separator(self.filter_dim + self.N, self.N, self.H,
self.filter_dim, self.num_spk, self.layer, self.segment_size, self.input_normalize)
# init
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_normal_(p)
def forward(self, mixture):
mixture_w = self.encoder(mixture)
output_all = self.separator(mixture_w)
# fix time dimension, might change due to convolution operations
T_mix = mixture.size(-1)
# generate wav after each RNN block and optimize the loss
outputs = []
for ii in range(len(output_all)):
output_ii = output_all[ii].view(
mixture.shape[0], self.C, self.N, mixture_w.shape[2])
output_ii = self.decoder(output_ii)
T_est = output_ii.size(-1)
output_ii = F.pad(output_ii, (0, T_mix - T_est))
outputs.append(output_ii)
return torch.stack(outputs)
class Encoder(nn.Module):
def __init__(self, L, N):
super(Encoder, self).__init__()
self.L, self.N = L, N
# setting 50% overlap
self.conv = nn.Conv1d(
1, N, kernel_size=L, stride=L // 2, bias=False)
def forward(self, mixture):
mixture = torch.unsqueeze(mixture, 1)
mixture_w = F.relu(self.conv(mixture))
return mixture_w
class Decoder(nn.Module):
def __init__(self, L):
super(Decoder, self).__init__()
self.L = L
def forward(self, est_source):
est_source = torch.transpose(est_source, 2, 3)
est_source = nn.AvgPool2d((1, self.L))(est_source)
est_source = overlap_and_add(est_source, self.L//2)
return est_source
|