File size: 11,325 Bytes
8235b4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Authors: Eliya Nachmani (enk100), Yossi Adi (adiyoss), Lior Wolf

import sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable

from ..utils import overlap_and_add
from ..utils import capture_init


class MulCatBlock(nn.Module):

    def __init__(self, input_size, hidden_size, dropout=0, bidirectional=False):
        super(MulCatBlock, self).__init__()

        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_direction = int(bidirectional) + 1

        self.rnn = nn.LSTM(input_size, hidden_size, 1, dropout=dropout,
                           batch_first=True, bidirectional=bidirectional)
        self.rnn_proj = nn.Linear(hidden_size * self.num_direction, input_size)

        self.gate_rnn = nn.LSTM(input_size, hidden_size, num_layers=1,
                                batch_first=True, dropout=dropout, bidirectional=bidirectional)
        self.gate_rnn_proj = nn.Linear(
            hidden_size * self.num_direction, input_size)

        self.block_projection = nn.Linear(input_size * 2, input_size)

    def forward(self, input):
        output = input
        # run rnn module
        rnn_output, _ = self.rnn(output)
        rnn_output = self.rnn_proj(rnn_output.contiguous(
        ).view(-1, rnn_output.shape[2])).view(output.shape).contiguous()
        # run gate rnn module
        gate_rnn_output, _ = self.gate_rnn(output)
        gate_rnn_output = self.gate_rnn_proj(gate_rnn_output.contiguous(
        ).view(-1, gate_rnn_output.shape[2])).view(output.shape).contiguous()
        # apply gated rnn
        gated_output = torch.mul(rnn_output, gate_rnn_output)
        gated_output = torch.cat([gated_output, output], 2)
        gated_output = self.block_projection(
            gated_output.contiguous().view(-1, gated_output.shape[2])).view(output.shape)
        return gated_output


class ByPass(nn.Module):
    def __init__(self):
        super(ByPass, self).__init__()

    def forward(self, input):
        return input


class DPMulCat(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, num_spk,
                 dropout=0, num_layers=1, bidirectional=True, input_normalize=False):
        super(DPMulCat, self).__init__()

        self.input_size = input_size
        self.output_size = output_size
        self.hidden_size = hidden_size
        self.in_norm = input_normalize
        self.num_layers = num_layers

        self.rows_grnn = nn.ModuleList([])
        self.cols_grnn = nn.ModuleList([])
        self.rows_normalization = nn.ModuleList([])
        self.cols_normalization = nn.ModuleList([])

        # create the dual path pipeline
        for i in range(num_layers):
            self.rows_grnn.append(MulCatBlock(
                input_size, hidden_size, dropout, bidirectional=bidirectional))
            self.cols_grnn.append(MulCatBlock(
                input_size, hidden_size, dropout, bidirectional=bidirectional))
            if self.in_norm:
                self.rows_normalization.append(
                    nn.GroupNorm(1, input_size, eps=1e-8))
                self.cols_normalization.append(
                    nn.GroupNorm(1, input_size, eps=1e-8))
            else:
                # used to disable normalization
                self.rows_normalization.append(ByPass())
                self.cols_normalization.append(ByPass())

        self.output = nn.Sequential(
            nn.PReLU(), nn.Conv2d(input_size, output_size * num_spk, 1))

    def forward(self, input):
        batch_size, _, d1, d2 = input.shape
        output = input
        output_all = []
        for i in range(self.num_layers):
            row_input = output.permute(0, 3, 2, 1).contiguous().view(
                batch_size * d2, d1, -1)
            row_output = self.rows_grnn[i](row_input)
            row_output = row_output.view(
                batch_size, d2, d1, -1).permute(0, 3, 2, 1).contiguous()
            row_output = self.rows_normalization[i](row_output)
            # apply a skip connection
            if self.training:
                output = output + row_output
            else:
                output += row_output

            col_input = output.permute(0, 2, 3, 1).contiguous().view(
                batch_size * d1, d2, -1)
            col_output = self.cols_grnn[i](col_input)
            col_output = col_output.view(
                batch_size, d1, d2, -1).permute(0, 3, 1, 2).contiguous()
            col_output = self.cols_normalization[i](col_output).contiguous()
            # apply a skip connection
            if self.training:
                output = output + col_output
            else:
                output += col_output

            output_i = self.output(output)
            if self.training or i == (self.num_layers - 1):
                output_all.append(output_i)
        return output_all


class Separator(nn.Module):
    def __init__(self, input_dim, feature_dim, hidden_dim, output_dim, num_spk=2,
                 layer=4, segment_size=100, input_normalize=False, bidirectional=True):
        super(Separator, self).__init__()

        self.input_dim = input_dim
        self.feature_dim = feature_dim
        self.hidden_dim = hidden_dim
        self.output_dim = output_dim

        self.layer = layer
        self.segment_size = segment_size
        self.num_spk = num_spk
        self.input_normalize = input_normalize

        self.rnn_model = DPMulCat(self.feature_dim, self.hidden_dim,
                                  self.feature_dim, self.num_spk, num_layers=layer, bidirectional=bidirectional, input_normalize=input_normalize)

    # ======================================= #
    # The following code block was borrowed and modified from https://github.com/yluo42/TAC
    # ================ BEGIN ================ #
    def pad_segment(self, input, segment_size):
        # input is the features: (B, N, T)
        batch_size, dim, seq_len = input.shape
        segment_stride = segment_size // 2
        rest = segment_size - (segment_stride + seq_len %
                               segment_size) % segment_size
        if rest > 0:
            pad = Variable(torch.zeros(batch_size, dim, rest)
                           ).type(input.type())
            input = torch.cat([input, pad], 2)

        pad_aux = Variable(torch.zeros(
            batch_size, dim, segment_stride)).type(input.type())
        input = torch.cat([pad_aux, input, pad_aux], 2)
        return input, rest

    def create_chuncks(self, input, segment_size):
        # split the feature into chunks of segment size
        # input is the features: (B, N, T)

        input, rest = self.pad_segment(input, segment_size)
        batch_size, dim, seq_len = input.shape
        segment_stride = segment_size // 2

        segments1 = input[:, :, :-segment_stride].contiguous().view(batch_size,
                                                                    dim, -1, segment_size)
        segments2 = input[:, :, segment_stride:].contiguous().view(
            batch_size, dim, -1, segment_size)
        segments = torch.cat([segments1, segments2], 3).view(
            batch_size, dim, -1, segment_size).transpose(2, 3)
        return segments.contiguous(), rest

    def merge_chuncks(self, input, rest):
        # merge the splitted features into full utterance
        # input is the features: (B, N, L, K)

        batch_size, dim, segment_size, _ = input.shape
        segment_stride = segment_size // 2
        input = input.transpose(2, 3).contiguous().view(
            batch_size, dim, -1, segment_size*2)  # B, N, K, L

        input1 = input[:, :, :, :segment_size].contiguous().view(
            batch_size, dim, -1)[:, :, segment_stride:]
        input2 = input[:, :, :, segment_size:].contiguous().view(
            batch_size, dim, -1)[:, :, :-segment_stride]

        output = input1 + input2
        if rest > 0:
            output = output[:, :, :-rest]
        return output.contiguous()  # B, N, T
    # ================= END ================= #

    def forward(self, input):
        # create chunks
        enc_segments, enc_rest = self.create_chuncks(
            input, self.segment_size)
        # separate
        output_all = self.rnn_model(enc_segments)
        
        # merge back audio files
        output_all_wav = []
        for ii in range(len(output_all)):
            output_ii = self.merge_chuncks(
                output_all[ii], enc_rest)
            output_all_wav.append(output_ii)
        return output_all_wav


class SWave(nn.Module):
    @capture_init
    def __init__(self, N, L, H, R, C, sr, segment, input_normalize):
        super(SWave, self).__init__()
        # hyper-parameter
        self.N, self.L, self.H, self.R, self.C, self.sr, self.segment = N, L, H, R, C, sr, segment
        self.input_normalize = input_normalize
        self.context_len = 2 * self.sr / 1000
        self.context = int(self.sr * self.context_len / 1000)
        self.layer = self.R
        self.filter_dim = self.context * 2 + 1
        self.num_spk = self.C
        # similar to dprnn paper, setting chancksize to sqrt(2*L)
        self.segment_size = int(
            np.sqrt(2 * self.sr * self.segment / (self.L/2)))

        # model sub-networks
        self.encoder = Encoder(L, N)
        self.decoder = Decoder(L)
        self.separator = Separator(self.filter_dim + self.N, self.N, self.H,
                                   self.filter_dim, self.num_spk, self.layer, self.segment_size, self.input_normalize)
        # init
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_normal_(p)

    def forward(self, mixture):
        mixture_w = self.encoder(mixture)
        output_all = self.separator(mixture_w)

        # fix time dimension, might change due to convolution operations
        T_mix = mixture.size(-1)
        # generate wav after each RNN block and optimize the loss
        outputs = []
        for ii in range(len(output_all)):
            output_ii = output_all[ii].view(
                mixture.shape[0], self.C, self.N, mixture_w.shape[2])
            output_ii = self.decoder(output_ii)

            T_est = output_ii.size(-1)
            output_ii = F.pad(output_ii, (0, T_mix - T_est))
            outputs.append(output_ii)
        return torch.stack(outputs)


class Encoder(nn.Module):
    def __init__(self, L, N):
        super(Encoder, self).__init__()
        self.L, self.N = L, N
        # setting 50% overlap
        self.conv = nn.Conv1d(
            1, N, kernel_size=L, stride=L // 2, bias=False)

    def forward(self, mixture):
        mixture = torch.unsqueeze(mixture, 1)
        mixture_w = F.relu(self.conv(mixture))
        return mixture_w


class Decoder(nn.Module):
    def __init__(self, L):
        super(Decoder, self).__init__()
        self.L = L

    def forward(self, est_source):
        est_source = torch.transpose(est_source, 2, 3)
        est_source = nn.AvgPool2d((1, self.L))(est_source)
        est_source = overlap_and_add(est_source, self.L//2)

        return est_source