File size: 5,220 Bytes
254fdf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
""" 

This code is borrowed from https://github.com/buptLinfy/ZSE-SBIR

"""

import math
import copy

import torch
import torch.nn as nn
import torch.nn.functional as F


def clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])


class LayerNorm(nn.Module):
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a = nn.Parameter(torch.ones(features))
        self.b = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a * (x - mean) / (std + self.eps) + self.b


class AddAndNorm(nn.Module):

    def __init__(self, size, dropout):
        super(AddAndNorm, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, y):
        return self.norm(x + self.dropout(y))


class EncoderLayer(nn.Module):
    "Encoder is made up of self-attn and feed forward (defined below)"

    def __init__(self, size, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(AddAndNorm(size, dropout), 2)
        self.size = size

    def forward(self, q, k, v, mask):
        x = self.sublayer[0](v, self.self_attn(q, k, v, mask))
        x = self.sublayer[1](x, self.feed_forward(x))
        return x


class Encoder(nn.Module):

    def __init__(self, layer, N):
        super(Encoder, self).__init__()
        self.layers = clones(layer, N)
        self.layer1 = clones(layer, N)
        self.layer2 = clones(layer, N)

    def forward(self, x_im, x_text, mask):
        for layer1, layer2 in zip(self.layer1, self.layer2):
            # 在此交换Q exchange Q here
            # layer1 处理 sk - layer1 process sk
            # x_text1 = layer1(x_text, x_im, x_text, mask)
            # layer2 处理 im - layer2 process im
            x_im = layer2(x_im, x_text, x_im, mask)
            # x_sk = x_text1
        return x_im

def attention(query, key, value, dropout=None, mask=None, pos=None):
    """
    dk = dv = dmodel/h = 64,h=8
    """
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)

    p_attn = F.softmax(scores, dim=-1)
    if dropout is not None:
        p_attn = dropout(p_attn)

    return torch.matmul(p_attn, value), p_attn


class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        "Take in model size and number of heads."
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        # We assume d_v always equals d_k
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, query, key, value, mask=None):
        """

        :param query: size(batch,seq,512)
        :param key:
        :param value:
        :param mask:
        :return:
        """
        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)

        # 1) Do all the linear projections in batch from d_model => h x d_k
        # size(batch,h,seq,dk)
        query, key, value = \
            [lin(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
             for lin, x in zip(self.linears, (query, key, value))]

        # 2) Apply attention on all the projected vectors in batch.
        x, self.attn = attention(query, key, value, mask=mask,
                                 dropout=self.dropout)

        # 3) "Concat" using a view and apply a final linear.
        x = x.transpose(1, 2).contiguous() \
            .view(nbatches, -1, self.h * self.d_k)

        return self.linears[-1](x)


class PositionwiseFeedForward(nn.Module):
    """
    d_model = 512
    d_ff = 2048 为论文中数值
    """

    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.w_2(self.dropout(F.relu(self.w_1(x))))


class Cross_Attention(nn.Module):
    def __init__(self, h=8, n=1, d_model=768, d_ff=1024, dropout=0.1): #(self, args, h=8, n=1, d_model=768, d_ff=1024, dropout=0.1):
        super(Cross_Attention, self).__init__()
        multi_head_attention = MultiHeadedAttention(h, d_model)
        ffn = PositionwiseFeedForward(d_model, d_ff, dropout)
        encoderLayer = EncoderLayer(d_model, multi_head_attention, ffn, dropout)
        self.encoder = Encoder(encoderLayer, n)
        self.text_projection = nn.Linear(512, d_model)
        
    def forward(self, x_patch,x_text):
        length = x_text.shape[0]
        x_text = self.text_projection(x_text)
        x_sketch= self.encoder(x_patch, x_text, None)  # 不要mask - don't mask
        return x_sketch