Spaces:
Runtime error
Runtime error
File size: 1,083 Bytes
41c9c41 dac9003 41c9c41 dac9003 41c9c41 dac9003 41c9c41 dac9003 41c9c41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# import streamlit as st
# from transformers import pipeline
# sentiment_analysis = pipeline("sentiment-analysis")
# text = st.text_input("Enter some text")
# if text:
# result = sentiment_analysis(text)
# st.json(result)
import streamlit as st
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
# Load sentiment analysis model from Hugging Face
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
# Streamlit UI
st.title("Sentiment Analysis App")
# User input
user_input = st.text_input("Enter a sentence:")
if user_input:
# Perform sentiment analysis
results = sentiment_analyzer(user_input)
# Display sentiment and confidence
sentiment = results[0]['label']
confidence = results[0]['score']
st.write(f"Sentiment: {sentiment}")
st.write(f"Confidence: {confidence:.2f}") |