File size: 3,417 Bytes
c691f41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from keras.models import Model
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda

################################################################
def simple_unet_model(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS):
#Build the model
    inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
    #s = Lambda(lambda x: x / 255)(inputs)   #No need for this if we normalize our inputs beforehand
    s = inputs

    #Contraction path
    c1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s)
    c1 = Dropout(0.1)(c1)
    c1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c1)
    p1 = MaxPooling2D((2, 2))(c1)
    
    c2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p1)
    c2 = Dropout(0.1)(c2)
    c2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c2)
    p2 = MaxPooling2D((2, 2))(c2)
     
    c3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p2)
    c3 = Dropout(0.2)(c3)
    c3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c3)
    p3 = MaxPooling2D((2, 2))(c3)
     
    c4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p3)
    c4 = Dropout(0.2)(c4)
    c4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c4)
    p4 = MaxPooling2D(pool_size=(2, 2))(c4)
     
    c5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p4)
    c5 = Dropout(0.3)(c5)
    c5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c5)
    
    #Expansive path 
    u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c5)
    u6 = concatenate([u6, c4])
    c6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u6)
    c6 = Dropout(0.2)(c6)
    c6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c6)
     
    u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c6)
    u7 = concatenate([u7, c3])
    c7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u7)
    c7 = Dropout(0.2)(c7)
    c7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c7)
     
    u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(c7)
    u8 = concatenate([u8, c2])
    c8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u8)
    c8 = Dropout(0.1)(c8)
    c8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c8)
     
    u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(c8)
    u9 = concatenate([u9, c1], axis=3)
    c9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u9)
    c9 = Dropout(0.1)(c9)
    c9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c9)
     
    outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9)
     
    model = Model(inputs=[inputs], outputs=[outputs])
    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
    model.summary()
    
    return model