File size: 24,878 Bytes
4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 1b371ad 4d55b31 9360743 1b371ad 9360743 7e6fbbc 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 4d55b31 9360743 1b371ad 9360743 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
import gc
import time
from diffusers_helper.hf_login import login
import os
# os.environ["HF_HOME"] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), "./hf_download")))
# we use HF_HOME in following order:
# 1. "../FramePack/hf_download" if exists.
# 2. "./hf_download"
hf_home_path_1 = os.path.abspath(
os.path.realpath(os.path.join(os.path.dirname(os.path.dirname(__file__)), "FramePack", "hf_download"))
)
hf_home_path_2 = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), "hf_download")))
hf_home = hf_home_path_1 if os.path.exists(hf_home_path_1) else hf_home_path_2
os.environ["HF_HOME"] = hf_home
print(f"Set HF_HOME env to {hf_home}")
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import argparse
import math
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import (
save_bcthw_as_mp4,
crop_or_pad_yield_mask,
soft_append_bcthw,
resize_and_center_crop,
state_dict_weighted_merge,
state_dict_offset_merge,
generate_timestamp,
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
cpu,
gpu,
get_cuda_free_memory_gb,
move_model_to_device_with_memory_preservation,
offload_model_from_device_for_memory_preservation,
fake_diffusers_current_device,
DynamicSwapInstaller,
unload_complete_models,
load_model_as_complete,
)
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
from utils.lora_utils import merge_lora_to_state_dict
from utils.fp8_optimization_utils import optimize_state_dict_with_fp8, apply_fp8_monkey_patch
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--server", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, required=False)
parser.add_argument("--inbrowser", action="store_true")
args = parser.parse_args()
# for win desktop probably use --server 127.0.0.1 --inbrowser
# For linux server probably use --server 127.0.0.1 or do not use any cmd flags
print(args)
free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 60
print(f"Free VRAM {free_mem_gb} GB")
print(f"High-VRAM Mode: {high_vram}")
text_encoder = LlamaModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", subfolder="text_encoder", torch_dtype=torch.float16
).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", subfolder="text_encoder_2", torch_dtype=torch.float16
).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer")
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer_2")
vae = AutoencoderKLHunyuanVideo.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16
).cpu()
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder="feature_extractor")
image_encoder = SiglipVisionModel.from_pretrained(
"lllyasviel/flux_redux_bfl", subfolder="image_encoder", torch_dtype=torch.float16
).cpu()
def load_transfomer():
print("Loading transformer ...")
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
"lllyasviel/FramePackI2V_HY", torch_dtype=torch.bfloat16
).cpu()
transformer.eval()
transformer.high_quality_fp32_output_for_inference = True
print("transformer.high_quality_fp32_output_for_inference = True")
transformer.to(dtype=torch.bfloat16)
transformer.requires_grad_(False)
return transformer
transformer = None # load later
transformer_dtype = torch.bfloat16
previous_lora_file = None
previous_lora_multiplier = None
previous_fp8_optimization = None
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
if not high_vram:
vae.enable_slicing()
vae.enable_tiling()
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
if not high_vram:
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
# DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
text_encoder.to(gpu)
text_encoder_2.to(gpu)
image_encoder.to(gpu)
vae.to(gpu)
# transformer.to(gpu)
stream = AsyncStream()
outputs_folder = "./outputs/"
os.makedirs(outputs_folder, exist_ok=True)
@torch.no_grad()
def worker(
input_image,
prompt,
n_prompt,
seed,
total_second_length,
latent_window_size,
steps,
cfg,
gs,
rs,
gpu_memory_preservation,
use_teacache,
mp4_crf,
lora_file,
lora_multiplier,
fp8_optimization,
):
global transformer, previous_lora_file, previous_lora_multiplier, previous_fp8_optimization
model_changed = transformer is None or (
lora_file != previous_lora_file
or lora_multiplier != previous_lora_multiplier
or fp8_optimization != previous_fp8_optimization
)
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
job_id = generate_timestamp()
stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "Starting ..."))))
try:
# Clean GPU
if not high_vram:
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
# Text encoding
stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "Text encoding ..."))))
if not high_vram:
# since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
fake_diffusers_current_device(text_encoder, gpu)
load_model_as_complete(text_encoder_2, target_device=gpu)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# Processing input image
stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "Image processing ..."))))
H, W, C = input_image.shape
height, width = find_nearest_bucket(H, W, resolution=640)
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f"{job_id}.png"))
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
# VAE encoding
stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "VAE encoding ..."))))
if not high_vram:
load_model_as_complete(vae, target_device=gpu)
start_latent = vae_encode(input_image_pt, vae)
# CLIP Vision
stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "CLIP Vision encoding ..."))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
# Dtype
llama_vec = llama_vec.to(transformer_dtype)
llama_vec_n = llama_vec_n.to(transformer_dtype)
clip_l_pooler = clip_l_pooler.to(transformer_dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer_dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer_dtype)
# Load transformer model
if model_changed:
stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "Loading transformer ..."))))
transformer = None
time.sleep(1.0) # wait for the previous model to be unloaded
torch.cuda.empty_cache()
gc.collect()
previous_lora_file = lora_file
previous_lora_multiplier = lora_multiplier
previous_fp8_optimization = fp8_optimization
transformer = load_transfomer() # bfloat16, on cpu
if lora_file is not None or fp8_optimization:
state_dict = transformer.state_dict()
# LoRA should be merged before fp8 optimization
if lora_file is not None:
# TODO It would be better to merge the LoRA into the state dict before creating the transformer instance.
# Use from_config() instead of from_pretrained to make the instance without loading.
print(f"Merging LoRA file {os.path.basename(lora_file)} ...")
state_dict = merge_lora_to_state_dict(state_dict, lora_file, lora_multiplier, device=gpu)
gc.collect()
if fp8_optimization:
TARGET_KEYS = ["transformer_blocks", "single_transformer_blocks"]
EXCLUDE_KEYS = ["norm"] # Exclude norm layers (e.g., LayerNorm, RMSNorm) from FP8
# inplace optimization
print("Optimizing for fp8")
state_dict = optimize_state_dict_with_fp8(state_dict, gpu, TARGET_KEYS, EXCLUDE_KEYS, move_to_device=False)
# apply monkey patching
apply_fp8_monkey_patch(transformer, state_dict, use_scaled_mm=False)
gc.collect()
info = transformer.load_state_dict(state_dict, strict=True, assign=True)
print(f"LoRA and/or fp8 optimization applied: {info}")
if not high_vram:
DynamicSwapInstaller.install_model(transformer, device=gpu)
else:
transformer.to(gpu)
# Sampling
stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "Start sampling ..."))))
rnd = torch.Generator("cpu").manual_seed(seed)
num_frames = latent_window_size * 4 - 3
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
history_pixels = None
total_generated_latent_frames = 0
latent_paddings = reversed(range(total_latent_sections))
if total_latent_sections > 4:
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
# items looks better than expanding it when total_latent_sections > 4
# One can try to remove below trick and just
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
for latent_padding in latent_paddings:
is_last_section = latent_padding == 0
latent_padding_size = latent_padding * latent_window_size
if stream.input_queue.top() == "end":
stream.output_queue.push(("end", None))
return
print(f"latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}")
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
(
clean_latent_indices_pre,
blank_indices,
latent_indices,
clean_latent_indices_post,
clean_latent_2x_indices,
clean_latent_4x_indices,
) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
clean_latents_pre = start_latent.to(history_latents)
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, : 1 + 2 + 16, :, :].split(
[1, 2, 16], dim=2
)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
if not high_vram:
unload_complete_models()
move_model_to_device_with_memory_preservation(
transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation
)
if use_teacache:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
preview = d["denoised"]
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, "b c t h w -> (b h) (t w) c")
if stream.input_queue.top() == "end":
stream.output_queue.push(("end", None))
raise KeyboardInterrupt("User ends the task.")
current_step = d["i"] + 1
percentage = int(100.0 * current_step / steps)
hint = f"Sampling {current_step}/{steps}"
desc = f"Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ..."
stream.output_queue.push(("progress", (preview, desc, make_progress_bar_html(percentage, hint))))
return
generated_latents = sample_hunyuan(
transformer=transformer,
sampler="unipc",
width=width,
height=height,
frames=num_frames,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
# shift=3.0,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
if is_last_section:
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
if not high_vram:
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
if not high_vram:
unload_complete_models()
output_filename = os.path.join(outputs_folder, f"{job_id}_{total_generated_latent_frames}.mp4")
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
print(f"Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}")
stream.output_queue.push(("file", output_filename))
if is_last_section:
break
except:
traceback.print_exc()
if not high_vram:
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
stream.output_queue.push(("end", None))
return
def process(
input_image,
prompt,
n_prompt,
seed,
total_second_length,
latent_window_size,
steps,
cfg,
gs,
rs,
gpu_memory_preservation,
use_teacache,
mp4_crf,
lora_file,
lora_multiplier,
fp8_optimization,
):
global stream
assert input_image is not None, "No input image!"
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
stream = AsyncStream()
async_run(
worker,
input_image,
prompt,
n_prompt,
seed,
total_second_length,
latent_window_size,
steps,
cfg,
gs,
rs,
gpu_memory_preservation,
use_teacache,
mp4_crf,
lora_file,
lora_multiplier,
fp8_optimization,
)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == "file":
output_filename = data
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
if flag == "progress":
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(
interactive=True
)
if flag == "end":
yield output_filename, gr.update(visible=False), gr.update(), "", gr.update(interactive=True), gr.update(
interactive=False
)
break
def end_process():
stream.input_queue.push("end")
quick_prompts = [
"The girl dances gracefully, with clear movements, full of charm.",
"A character doing some simple body movements.",
]
quick_prompts = [[x] for x in quick_prompts]
css = make_progress_bar_css()
block = gr.Blocks(css=css).queue()
with block:
gr.Markdown("# FramePack")
with gr.Row():
with gr.Column():
input_image = gr.Image(sources="upload", type="numpy", label="Image", height=320)
prompt = gr.Textbox(label="Prompt", value="")
example_quick_prompts = gr.Dataset(
samples=quick_prompts, label="Quick List", samples_per_page=1000, components=[prompt]
)
example_quick_prompts.click(
lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False
)
with gr.Row():
start_button = gr.Button(value="Start Generation")
end_button = gr.Button(value="End Generation", interactive=False)
with gr.Group():
use_teacache = gr.Checkbox(
label="Use TeaCache", value=True, info="Faster speed, but often makes hands and fingers slightly worse."
)
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) # Not used
seed = gr.Number(label="Seed", value=31337, precision=0)
total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
latent_window_size = gr.Slider(
label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False
) # Should not change
steps = gr.Slider(
label="Steps", minimum=1, maximum=100, value=25, step=1, info="Changing this value is not recommended."
)
cfg = gr.Slider(
label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False
) # Should not change
gs = gr.Slider(
label="Distilled CFG Scale",
minimum=1.0,
maximum=32.0,
value=10.0,
step=0.01,
info="Changing this value is not recommended.",
)
rs = gr.Slider(
label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False
) # Should not change
gpu_memory_preservation = gr.Slider(
label="GPU Inference Preserved Memory (GB) (larger means slower)",
minimum=6,
maximum=128,
value=6,
step=0.1,
info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.",
)
mp4_crf = gr.Slider(
label="MP4 Compression",
minimum=0,
maximum=100,
value=16,
step=1,
info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ",
)
with gr.Group():
lora_file = gr.File(label="LoRA File", file_count="single", type="filepath")
lora_multiplier = gr.Slider(label="LoRA Multiplier", minimum=0.0, maximum=1.0, value=0.8, step=0.1)
fp8_optimization = gr.Checkbox(label="FP8 Optimization", value=False)
with gr.Column():
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
gr.Markdown(
"Note that the ending actions will be generated before the starting actions due to the inverted sampling. If the starting action is not in the video, you just need to wait, and it will be generated later."
)
progress_desc = gr.Markdown("", elem_classes="no-generating-animation")
progress_bar = gr.HTML("", elem_classes="no-generating-animation")
gr.HTML(
'<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>'
)
ips = [
input_image,
prompt,
n_prompt,
seed,
total_second_length,
latent_window_size,
steps,
cfg,
gs,
rs,
gpu_memory_preservation,
use_teacache,
mp4_crf,
lora_file,
lora_multiplier,
fp8_optimization,
]
start_button.click(
fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]
)
end_button.click(fn=end_process)
block.launch(
server_name=args.server,
server_port=args.port,
share=args.share,
inbrowser=args.inbrowser,
)
|