File size: 24,878 Bytes
4d55b31
 
9360743
 
 
 
4d55b31
 
 
 
 
 
 
 
 
 
 
 
9360743
 
 
 
 
 
 
 
 
 
 
 
 
 
4d55b31
 
 
 
 
 
 
 
 
9360743
 
4d55b31
 
 
 
 
 
 
 
 
 
 
9360743
 
 
 
 
4d55b31
 
9360743
 
 
4d55b31
 
1b371ad
4d55b31
9360743
 
1b371ad
 
 
9360743
 
 
7e6fbbc
9360743
4d55b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9360743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d55b31
9360743
 
 
 
 
 
4d55b31
9360743
 
 
4d55b31
9360743
 
 
 
4d55b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9360743
 
 
 
 
4d55b31
9360743
 
 
 
4d55b31
9360743
 
 
4d55b31
9360743
 
4d55b31
 
9360743
 
 
 
 
 
 
 
 
 
 
 
 
 
4d55b31
9360743
 
 
 
 
4d55b31
9360743
 
 
 
 
 
4d55b31
9360743
 
 
 
 
 
 
 
4d55b31
9360743
 
 
 
 
 
 
 
 
4d55b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9360743
 
 
4d55b31
9360743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d55b31
 
9360743
 
4d55b31
9360743
 
4d55b31
 
 
 
 
 
 
 
9360743
 
 
4d55b31
 
 
9360743
 
 
 
4d55b31
 
 
9360743
 
 
 
 
 
 
4d55b31
9360743
 
 
4d55b31
9360743
4d55b31
 
 
9360743
4d55b31
9360743
4d55b31
 
 
9360743
 
 
 
4d55b31
9360743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d55b31
9360743
4d55b31
9360743
4d55b31
9360743
4d55b31
9360743
 
 
 
 
 
 
4d55b31
9360743
4d55b31
9360743
 
 
4d55b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9360743
4d55b31
9360743
4d55b31
9360743
 
 
4d55b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9360743
 
 
 
 
 
4d55b31
9360743
 
 
4d55b31
9360743
4d55b31
 
 
9360743
4d55b31
 
 
 
9360743
 
 
 
4d55b31
9360743
 
 
4d55b31
 
9360743
 
 
 
 
 
 
4d55b31
9360743
 
4d55b31
 
 
 
 
 
 
 
9360743
 
 
 
 
 
4d55b31
 
 
9360743
 
 
 
 
4d55b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9360743
4d55b31
 
 
 
9360743
 
 
 
4d55b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9360743
 
 
 
 
 
 
1b371ad
9360743
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
import gc
import time
from diffusers_helper.hf_login import login

import os

# os.environ["HF_HOME"] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), "./hf_download")))

# we use HF_HOME in following order:
# 1. "../FramePack/hf_download" if exists.
# 2. "./hf_download"
hf_home_path_1 = os.path.abspath(
    os.path.realpath(os.path.join(os.path.dirname(os.path.dirname(__file__)), "FramePack", "hf_download"))
)
hf_home_path_2 = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), "hf_download")))
hf_home = hf_home_path_1 if os.path.exists(hf_home_path_1) else hf_home_path_2
os.environ["HF_HOME"] = hf_home
print(f"Set HF_HOME env to {hf_home}")

import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import argparse
import math

from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import (
    save_bcthw_as_mp4,
    crop_or_pad_yield_mask,
    soft_append_bcthw,
    resize_and_center_crop,
    state_dict_weighted_merge,
    state_dict_offset_merge,
    generate_timestamp,
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
    cpu,
    gpu,
    get_cuda_free_memory_gb,
    move_model_to_device_with_memory_preservation,
    offload_model_from_device_for_memory_preservation,
    fake_diffusers_current_device,
    DynamicSwapInstaller,
    unload_complete_models,
    load_model_as_complete,
)
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
from utils.lora_utils import merge_lora_to_state_dict
from utils.fp8_optimization_utils import optimize_state_dict_with_fp8, apply_fp8_monkey_patch


parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--server", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, required=False)
parser.add_argument("--inbrowser", action="store_true")
args = parser.parse_args()

# for win desktop probably use --server 127.0.0.1 --inbrowser
# For linux server probably use --server 127.0.0.1 or do not use any cmd flags

print(args)

free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 60

print(f"Free VRAM {free_mem_gb} GB")
print(f"High-VRAM Mode: {high_vram}")

text_encoder = LlamaModel.from_pretrained(
    "hunyuanvideo-community/HunyuanVideo", subfolder="text_encoder", torch_dtype=torch.float16
).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained(
    "hunyuanvideo-community/HunyuanVideo", subfolder="text_encoder_2", torch_dtype=torch.float16
).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer")
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer_2")
vae = AutoencoderKLHunyuanVideo.from_pretrained(
    "hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16
).cpu()

feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder="feature_extractor")
image_encoder = SiglipVisionModel.from_pretrained(
    "lllyasviel/flux_redux_bfl", subfolder="image_encoder", torch_dtype=torch.float16
).cpu()


def load_transfomer():
    print("Loading transformer ...")
    transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
        "lllyasviel/FramePackI2V_HY", torch_dtype=torch.bfloat16
    ).cpu()
    transformer.eval()
    transformer.high_quality_fp32_output_for_inference = True
    print("transformer.high_quality_fp32_output_for_inference = True")

    transformer.to(dtype=torch.bfloat16)
    transformer.requires_grad_(False)
    return transformer


transformer = None  # load later
transformer_dtype = torch.bfloat16
previous_lora_file = None
previous_lora_multiplier = None
previous_fp8_optimization = None

vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()

if not high_vram:
    vae.enable_slicing()
    vae.enable_tiling()

vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)

vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)

if not high_vram:
    # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
    # DynamicSwapInstaller.install_model(transformer, device=gpu)
    DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
    text_encoder.to(gpu)
    text_encoder_2.to(gpu)
    image_encoder.to(gpu)
    vae.to(gpu)
    # transformer.to(gpu)

stream = AsyncStream()

outputs_folder = "./outputs/"
os.makedirs(outputs_folder, exist_ok=True)


@torch.no_grad()
def worker(
    input_image,
    prompt,
    n_prompt,
    seed,
    total_second_length,
    latent_window_size,
    steps,
    cfg,
    gs,
    rs,
    gpu_memory_preservation,
    use_teacache,
    mp4_crf,
    lora_file,
    lora_multiplier,
    fp8_optimization,
):
    global transformer, previous_lora_file, previous_lora_multiplier, previous_fp8_optimization

    model_changed = transformer is None or (
        lora_file != previous_lora_file
        or lora_multiplier != previous_lora_multiplier
        or fp8_optimization != previous_fp8_optimization
    )

    total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
    total_latent_sections = int(max(round(total_latent_sections), 1))

    job_id = generate_timestamp()

    stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "Starting ..."))))

    try:
        # Clean GPU
        if not high_vram:
            unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)

        # Text encoding

        stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "Text encoding ..."))))

        if not high_vram:
            # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
            fake_diffusers_current_device(text_encoder, gpu)
            load_model_as_complete(text_encoder_2, target_device=gpu)

        llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)

        if cfg == 1:
            llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
        else:
            llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)

        llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
        llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)

        # Processing input image

        stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "Image processing ..."))))

        H, W, C = input_image.shape
        height, width = find_nearest_bucket(H, W, resolution=640)
        input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)

        Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f"{job_id}.png"))

        input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
        input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]

        # VAE encoding

        stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "VAE encoding ..."))))

        if not high_vram:
            load_model_as_complete(vae, target_device=gpu)

        start_latent = vae_encode(input_image_pt, vae)

        # CLIP Vision

        stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "CLIP Vision encoding ..."))))

        if not high_vram:
            load_model_as_complete(image_encoder, target_device=gpu)

        image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
        image_encoder_last_hidden_state = image_encoder_output.last_hidden_state

        # Dtype

        llama_vec = llama_vec.to(transformer_dtype)
        llama_vec_n = llama_vec_n.to(transformer_dtype)
        clip_l_pooler = clip_l_pooler.to(transformer_dtype)
        clip_l_pooler_n = clip_l_pooler_n.to(transformer_dtype)
        image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer_dtype)

        # Load transformer model
        if model_changed:
            stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "Loading transformer ..."))))

            transformer = None
            time.sleep(1.0)  # wait for the previous model to be unloaded
            torch.cuda.empty_cache()
            gc.collect()

            previous_lora_file = lora_file
            previous_lora_multiplier = lora_multiplier
            previous_fp8_optimization = fp8_optimization

            transformer = load_transfomer()  # bfloat16, on cpu

            if lora_file is not None or fp8_optimization:
                state_dict = transformer.state_dict()

                # LoRA should be merged before fp8 optimization
                if lora_file is not None:
                    # TODO It would be better to merge the LoRA into the state dict before creating the transformer instance.
                    # Use from_config() instead of from_pretrained to make the instance without loading.

                    print(f"Merging LoRA file {os.path.basename(lora_file)} ...")
                    state_dict = merge_lora_to_state_dict(state_dict, lora_file, lora_multiplier, device=gpu)
                    gc.collect()

                if fp8_optimization:
                    TARGET_KEYS = ["transformer_blocks", "single_transformer_blocks"]
                    EXCLUDE_KEYS = ["norm"]  # Exclude norm layers (e.g., LayerNorm, RMSNorm) from FP8

                    # inplace optimization
                    print("Optimizing for fp8")
                    state_dict = optimize_state_dict_with_fp8(state_dict, gpu, TARGET_KEYS, EXCLUDE_KEYS, move_to_device=False)

                    # apply monkey patching
                    apply_fp8_monkey_patch(transformer, state_dict, use_scaled_mm=False)
                    gc.collect()

                info = transformer.load_state_dict(state_dict, strict=True, assign=True)
                print(f"LoRA and/or fp8 optimization applied: {info}")

            if not high_vram:
                DynamicSwapInstaller.install_model(transformer, device=gpu)
            else:
                transformer.to(gpu)

        # Sampling

        stream.output_queue.push(("progress", (None, "", make_progress_bar_html(0, "Start sampling ..."))))

        rnd = torch.Generator("cpu").manual_seed(seed)
        num_frames = latent_window_size * 4 - 3

        history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
        history_pixels = None
        total_generated_latent_frames = 0

        latent_paddings = reversed(range(total_latent_sections))

        if total_latent_sections > 4:
            # In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
            # items looks better than expanding it when total_latent_sections > 4
            # One can try to remove below trick and just
            # use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
            latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]

        for latent_padding in latent_paddings:
            is_last_section = latent_padding == 0
            latent_padding_size = latent_padding * latent_window_size

            if stream.input_queue.top() == "end":
                stream.output_queue.push(("end", None))
                return

            print(f"latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}")

            indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
            (
                clean_latent_indices_pre,
                blank_indices,
                latent_indices,
                clean_latent_indices_post,
                clean_latent_2x_indices,
                clean_latent_4x_indices,
            ) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
            clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)

            clean_latents_pre = start_latent.to(history_latents)
            clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, : 1 + 2 + 16, :, :].split(
                [1, 2, 16], dim=2
            )
            clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)

            if not high_vram:
                unload_complete_models()
                move_model_to_device_with_memory_preservation(
                    transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation
                )

            if use_teacache:
                transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
            else:
                transformer.initialize_teacache(enable_teacache=False)

            def callback(d):
                preview = d["denoised"]
                preview = vae_decode_fake(preview)

                preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
                preview = einops.rearrange(preview, "b c t h w -> (b h) (t w) c")

                if stream.input_queue.top() == "end":
                    stream.output_queue.push(("end", None))
                    raise KeyboardInterrupt("User ends the task.")

                current_step = d["i"] + 1
                percentage = int(100.0 * current_step / steps)
                hint = f"Sampling {current_step}/{steps}"
                desc = f"Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ..."
                stream.output_queue.push(("progress", (preview, desc, make_progress_bar_html(percentage, hint))))
                return

            generated_latents = sample_hunyuan(
                transformer=transformer,
                sampler="unipc",
                width=width,
                height=height,
                frames=num_frames,
                real_guidance_scale=cfg,
                distilled_guidance_scale=gs,
                guidance_rescale=rs,
                # shift=3.0,
                num_inference_steps=steps,
                generator=rnd,
                prompt_embeds=llama_vec,
                prompt_embeds_mask=llama_attention_mask,
                prompt_poolers=clip_l_pooler,
                negative_prompt_embeds=llama_vec_n,
                negative_prompt_embeds_mask=llama_attention_mask_n,
                negative_prompt_poolers=clip_l_pooler_n,
                device=gpu,
                dtype=torch.bfloat16,
                image_embeddings=image_encoder_last_hidden_state,
                latent_indices=latent_indices,
                clean_latents=clean_latents,
                clean_latent_indices=clean_latent_indices,
                clean_latents_2x=clean_latents_2x,
                clean_latent_2x_indices=clean_latent_2x_indices,
                clean_latents_4x=clean_latents_4x,
                clean_latent_4x_indices=clean_latent_4x_indices,
                callback=callback,
            )

            if is_last_section:
                generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)

            total_generated_latent_frames += int(generated_latents.shape[2])
            history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)

            if not high_vram:
                offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
                load_model_as_complete(vae, target_device=gpu)

            real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]

            if history_pixels is None:
                history_pixels = vae_decode(real_history_latents, vae).cpu()
            else:
                section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
                overlapped_frames = latent_window_size * 4 - 3

                current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
                history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)

            if not high_vram:
                unload_complete_models()

            output_filename = os.path.join(outputs_folder, f"{job_id}_{total_generated_latent_frames}.mp4")

            save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)

            print(f"Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}")

            stream.output_queue.push(("file", output_filename))

            if is_last_section:
                break
    except:
        traceback.print_exc()

        if not high_vram:
            unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)

    stream.output_queue.push(("end", None))
    return


def process(
    input_image,
    prompt,
    n_prompt,
    seed,
    total_second_length,
    latent_window_size,
    steps,
    cfg,
    gs,
    rs,
    gpu_memory_preservation,
    use_teacache,
    mp4_crf,
    lora_file,
    lora_multiplier,
    fp8_optimization,
):
    global stream
    assert input_image is not None, "No input image!"

    yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)

    stream = AsyncStream()

    async_run(
        worker,
        input_image,
        prompt,
        n_prompt,
        seed,
        total_second_length,
        latent_window_size,
        steps,
        cfg,
        gs,
        rs,
        gpu_memory_preservation,
        use_teacache,
        mp4_crf,
        lora_file,
        lora_multiplier,
        fp8_optimization,
    )

    output_filename = None

    while True:
        flag, data = stream.output_queue.next()

        if flag == "file":
            output_filename = data
            yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)

        if flag == "progress":
            preview, desc, html = data
            yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(
                interactive=True
            )

        if flag == "end":
            yield output_filename, gr.update(visible=False), gr.update(), "", gr.update(interactive=True), gr.update(
                interactive=False
            )
            break


def end_process():
    stream.input_queue.push("end")


quick_prompts = [
    "The girl dances gracefully, with clear movements, full of charm.",
    "A character doing some simple body movements.",
]
quick_prompts = [[x] for x in quick_prompts]


css = make_progress_bar_css()
block = gr.Blocks(css=css).queue()
with block:
    gr.Markdown("# FramePack")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(sources="upload", type="numpy", label="Image", height=320)
            prompt = gr.Textbox(label="Prompt", value="")
            example_quick_prompts = gr.Dataset(
                samples=quick_prompts, label="Quick List", samples_per_page=1000, components=[prompt]
            )
            example_quick_prompts.click(
                lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False
            )

            with gr.Row():
                start_button = gr.Button(value="Start Generation")
                end_button = gr.Button(value="End Generation", interactive=False)

            with gr.Group():
                use_teacache = gr.Checkbox(
                    label="Use TeaCache", value=True, info="Faster speed, but often makes hands and fingers slightly worse."
                )

                n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)  # Not used
                seed = gr.Number(label="Seed", value=31337, precision=0)

                total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
                latent_window_size = gr.Slider(
                    label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False
                )  # Should not change
                steps = gr.Slider(
                    label="Steps", minimum=1, maximum=100, value=25, step=1, info="Changing this value is not recommended."
                )

                cfg = gr.Slider(
                    label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False
                )  # Should not change
                gs = gr.Slider(
                    label="Distilled CFG Scale",
                    minimum=1.0,
                    maximum=32.0,
                    value=10.0,
                    step=0.01,
                    info="Changing this value is not recommended.",
                )
                rs = gr.Slider(
                    label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False
                )  # Should not change

                gpu_memory_preservation = gr.Slider(
                    label="GPU Inference Preserved Memory (GB) (larger means slower)",
                    minimum=6,
                    maximum=128,
                    value=6,
                    step=0.1,
                    info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.",
                )

                mp4_crf = gr.Slider(
                    label="MP4 Compression",
                    minimum=0,
                    maximum=100,
                    value=16,
                    step=1,
                    info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ",
                )

            with gr.Group():
                lora_file = gr.File(label="LoRA File", file_count="single", type="filepath")
                lora_multiplier = gr.Slider(label="LoRA Multiplier", minimum=0.0, maximum=1.0, value=0.8, step=0.1)
                fp8_optimization = gr.Checkbox(label="FP8 Optimization", value=False)

        with gr.Column():
            preview_image = gr.Image(label="Next Latents", height=200, visible=False)
            result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
            gr.Markdown(
                "Note that the ending actions will be generated before the starting actions due to the inverted sampling. If the starting action is not in the video, you just need to wait, and it will be generated later."
            )
            progress_desc = gr.Markdown("", elem_classes="no-generating-animation")
            progress_bar = gr.HTML("", elem_classes="no-generating-animation")

    gr.HTML(
        '<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>'
    )

    ips = [
        input_image,
        prompt,
        n_prompt,
        seed,
        total_second_length,
        latent_window_size,
        steps,
        cfg,
        gs,
        rs,
        gpu_memory_preservation,
        use_teacache,
        mp4_crf,
        lora_file,
        lora_multiplier,
        fp8_optimization,
    ]
    start_button.click(
        fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]
    )
    end_button.click(fn=end_process)


block.launch(
    server_name=args.server,
    server_port=args.port,
    share=args.share,
    inbrowser=args.inbrowser,
)