File size: 13,856 Bytes
8df396a
 
afd3d9f
0f8851c
afd3d9f
030af93
 
8df396a
4f6f95c
 
8df396a
4f6f95c
afd3d9f
 
 
ca891f7
 
 
 
e8a12b5
afd3d9f
8df396a
 
 
 
 
9791b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef08ed2
 
030af93
 
 
4f6f95c
e218653
4f6f95c
8e73ae2
e218653
 
8e73ae2
e218653
8e73ae2
1d09b2b
 
b804667
 
 
1d09b2b
 
4f6f95c
 
f2b1e48
8df396a
 
 
 
 
 
f2b1e48
8df396a
 
1f303f9
 
8df396a
1d09b2b
8df396a
8e73ae2
 
 
 
 
 
 
 
 
 
8df396a
 
 
 
 
 
 
1f303f9
8df396a
 
1f303f9
8e73ae2
8df396a
8e73ae2
 
 
 
 
 
 
09a4c0c
e8a12b5
 
 
 
 
 
 
 
 
030af93
 
 
 
1d09b2b
 
030af93
 
 
 
1d09b2b
 
030af93
 
 
 
1d09b2b
 
 
 
 
 
030af93
 
 
1d09b2b
030af93
 
 
 
1d09b2b
 
 
 
 
030af93
 
0e1fd0a
 
 
9c593fe
0e1fd0a
 
 
 
 
 
 
 
b4f0dee
 
 
 
 
0e1fd0a
8e73ae2
 
 
 
 
 
 
 
663e901
e43ac0f
663e901
e43ac0f
 
 
 
 
 
 
 
 
8faae00
f393d97
 
 
f02b1d8
f393d97
acf00ee
 
 
 
 
 
 
f393d97
77e2743
f393d97
 
8faae00
 
8e73ae2
 
 
 
 
0e1fd0a
9711794
 
0e1fd0a
 
 
 
e8a12b5
 
 
 
 
0e1fd0a
9791b6d
 
 
 
 
 
 
 
0e1fd0a
 
 
 
 
 
 
 
 
 
 
8faae00
 
 
 
 
 
124f9a0
0e1fd0a
 
9c593fe
0e1fd0a
 
 
 
 
124f9a0
0e1fd0a
 
 
124f9a0
 
 
1d09b2b
 
 
0f8851c
 
 
8df396a
205a28b
 
1d09b2b
205a28b
030af93
1d09b2b
8e73ae2
 
1c59abf
8e73ae2
8faae00
 
 
1d09b2b
52a0cf1
 
1d09b2b
 
030af93
 
1d09b2b
030af93
 
9791b6d
 
 
 
030af93
 
1d09b2b
030af93
 
9791b6d
0f8851c
9c593fe
0f8851c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import gradio as gr
import tensorflow as tf
import pdfplumber
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import timm
import torch
import pandas as pd

# Load pre-trained zero-shot model for text classification (using PyTorch for compatibility)
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli", framework="pt")

# Pre-trained ResNet50 model for X-ray or image analysis using Timm
image_model = timm.create_model('resnet50', pretrained=True)
image_model.eval()

from tensorflow import keras
from tensorflow.keras.layers import TFSMLayer

# Load the model as a layer (in the SavedModel format)
#eye_model = TFSMLayer('model.h5')

# Patient database
patients_db = []

# Disease details for medical report analyzer
disease_details = {
    "anemia": {
        "medication": (
            "Iron supplements (e.g., ferrous sulfate), "
            "Vitamin B12 injections (for pernicious anemia), "
            "Folic acid supplements."
        ),
        "precaution": (
            "Consume iron-rich foods like spinach, red meat, and lentils. "
            "Pair iron-rich foods with vitamin C to enhance absorption. "
            "Avoid tea or coffee with meals as they inhibit iron absorption."
        ),
        "doctor": "Hematologist",
    },
    "liver disease": {
        "medication": (
            "Hepatoprotective drugs (e.g., ursodeoxycholic acid, silymarin). "
            "Antiviral therapy for viral hepatitis. "
            "Diuretics for managing fluid retention (e.g., spironolactone)."
        ),
        "precaution": (
            "Avoid alcohol and hepatotoxic drugs. "
            "Follow a low-fat diet and avoid processed foods. "
            "Regularly monitor liver function tests."
        ),
        "doctor": "Hepatologist",
    },
    "diabetes": {
        "medication": (
            "Oral hypoglycemics (e.g., metformin). "
            "Insulin therapy for Type 1 diabetes or advanced Type 2 diabetes. "
            "GLP-1 receptor agonists (e.g., liraglutide) for improving blood sugar control."
        ),
        "precaution": (
            "Monitor blood glucose levels daily. "
            "Follow a low-carb, high-fiber diet. "
            "Engage in regular physical activity. "
            "Avoid sugary foods and beverages."
        ),
        "doctor": "Endocrinologist",
    },
    "hypertension": {
        "medication": (
            "ACE inhibitors (e.g., lisinopril). "
            "Beta-blockers (e.g., metoprolol). "
            "Calcium channel blockers (e.g., amlodipine). "
            "Diuretics (e.g., hydrochlorothiazide)."
        ),
        "precaution": (
            "Reduce salt intake to less than 2g per day. "
            "Engage in at least 150 minutes of moderate exercise weekly. "
            "Avoid smoking and excessive alcohol consumption. "
            "Manage stress through relaxation techniques like yoga or meditation."
        ),
        "doctor": "Cardiologist",
    },
    "pneumonia": {
        "medication": (
            "Antibiotics (e.g., amoxicillin or azithromycin for bacterial pneumonia). "
            "Antiviral therapy if caused by viruses like influenza. "
            "Supplemental oxygen in severe cases."
        ),
        "precaution": (
            "Get plenty of rest and stay hydrated. "
            "Use a humidifier to ease breathing. "
            "Avoid smoking or exposure to pollutants. "
            "Ensure vaccination against influenza and pneumococcus."
        ),
        "doctor": "Pulmonologist",
    },
    "kidney disease": {
        "medication": (
            "ACE inhibitors or ARBs (e.g., losartan) for controlling blood pressure. "
            "Erythropoietin-stimulating agents for anemia management. "
            "Phosphate binders (e.g., sevelamer) to manage high phosphate levels."
        ),
        "precaution": (
            "Limit salt, potassium, and phosphorus in the diet. "
            "Stay hydrated but avoid overhydration. "
            "Avoid NSAIDs and other nephrotoxic drugs. "
            "Monitor kidney function and blood pressure regularly."
        ),
        "doctor": "Nephrologist",
    },
    "depression": {
        "medication": (
            "Selective serotonin reuptake inhibitors (SSRIs, e.g., sertraline). "
            "Serotonin-norepinephrine reuptake inhibitors (SNRIs, e.g., venlafaxine). "
            "Tricyclic antidepressants (e.g., amitriptyline) in specific cases."
        ),
        "precaution": (
            "Engage in regular physical exercise. "
            "Maintain a routine and avoid isolation. "
            "Consider therapy (e.g., CBT or psychotherapy). "
            "Avoid alcohol and recreational drugs."
        ),
        "doctor": "Psychiatrist",},
    }
# Passwords
doctor_password = "doctor123"

# Loading the custom model for consultation with the doctor
try:
    # Force using the slow tokenizer for compatibility
    tokenizer = AutoTokenizer.from_pretrained("ahmed-7124/NeuraMedAW", use_fast=False)
except Exception as e:
    print(f"Tokenizer error: {e}")
    tokenizer = AutoTokenizer.from_pretrained("ahmed-7124/NeuraMedAW", use_fast=False)

model = AutoModelForCausalLM.from_pretrained("ahmed-7124/NeuraMedAW")

def consult_doctor(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=100)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

# Functions for the app

def register_patient(name, age, gender, password):
    patient_id = len(patients_db) + 1
    patients_db.append({
        "ID": patient_id,
        "Name": name,
        "Age": age,
        "Gender": gender,
        "Password": password,
        "Diagnosis": "",
        "Medications": "",
        "Precautions": "",
        "Doctor": ""
    })
    return f"βœ… Patient {name} registered successfully. Patient ID: {patient_id}"

def analyze_or_extract_report(patient_id, pdf=None, report_text=None):
    if pdf:
        # Extract text from PDF
        with pdfplumber.open(pdf.name) as pdf_file:
            report_text = "".join([page.extract_text() for page in pdf_file.pages])
    
    if not report_text:
        return "❌ Please provide a report text or upload a PDF."

    # Analyze the report
    candidate_labels = list(disease_details.keys())
    result = classifier(report_text, candidate_labels)
    diagnosis = result['labels'][0]

    # Update patient's record
    medication = disease_details[diagnosis]['medication']
    precaution = disease_details[diagnosis]['precaution']
    doctor = disease_details[diagnosis]['doctor']
    for patient in patients_db:
        if patient['ID'] == patient_id:
            patient.update(Diagnosis=diagnosis, Medications=medication, Precautions=precaution, Doctor=doctor)
    return f"πŸ” Diagnosis: {diagnosis}\nπŸ’Š Medication: {medication}\n⚠ Precaution: {precaution}\nπŸ‘©β€βš• Recommended Doctor: {doctor}"


# def extract_pdf_report(pdf):
#     text = ""
#     with pdfplumber.open(pdf.name) as pdf_file:
#         for page in pdf_file.pages:
#             text += page.extract_text()
#     return text
#
# def predict_eye_disease(input_image):
#     input_image = tf.image.resize(input_image, [224, 224]) / 255.0
#     input_image = tf.expand_dims(input_image, 0)
#     predictions = eye_model(input_image)
#     labels = ['Cataract', 'Conjunctivitis', 'Glaucoma', 'Normal']
#     confidence_scores = {labels[i]: round(predictions[i] * 100, 2) for i in range(len(labels))}
#     if confidence_scores['Normal'] > 50:
#         return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%"
#     return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()])

def doctor_space(patient_id):
    for patient in patients_db:
        if patient["ID"] == patient_id:
            return f"⚠ Precautions: {patient['Precautions']}\nπŸ‘©β€βš• Recommended Doctor: {patient['Doctor']}"
    return "❌ Patient not found. Please check the ID."

def pharmacist_space(patient_id):
    for patient in patients_db:
        if patient["ID"] == patient_id:
            return f"πŸ’Š Medications: {patient['Medications']}"
    return "❌ Patient not found. Please check the ID."

def patient_dashboard(patient_id, password):
    for patient in patients_db:
        if patient["ID"] == patient_id and patient["Password"] == password:
            return (f"🩺 Name: {patient['Name']}\n"
                    f"πŸ“‹ Diagnosis: {patient['Diagnosis']}\n"
                    f"πŸ’Š Medications: {patient['Medications']}\n"
                    f"⚠ Precautions: {patient['Precautions']}\n"
                    f"πŸ‘©β€βš• Recommended Doctor: {patient['Doctor']}")
    return "❌ Access Denied: Invalid ID or Password."

def doctor_dashboard(password):
    if password != doctor_password:
        return "❌ Access Denied: Incorrect Password"
    if not patients_db:
        return "No patient records available."
    details = []
    for patient in patients_db:
        details.append(f"🩺 Name: {patient['Name']}\n"
                       f"πŸ“‹ Diagnosis: {patient['Diagnosis']}\n"
                       f"πŸ’Š Medications: {patient['Medications']}\n"
                       f"⚠ Precautions: {patient['Precautions']}\n"
                       f"πŸ‘©β€βš• Recommended Doctor: {patient['Doctor']}")
    return "\n\n".join(details)

# Gradio Interfaces
registration_interface = gr.Interface(
    fn=register_patient,
    inputs=[ 
        gr.Textbox(label="Patient Name"),
        gr.Number(label="Age"),
        gr.Radio(label="Gender", choices=["Male", "Female", "Other"]),
        gr.Textbox(label="Set Password", type="password"),
    ],
    outputs="text",
)

#pdf_extraction_interface = gr.Interface(
 #   fn=extract_pdf_report,
  #  inputs=gr.File(label="Upload PDF Report"),
   # outputs="text",
#)

# report_analysis_interface = gr.Interface(
#     fn=analyze_report,
#     inputs=[ 
#         gr.Number(label="Patient ID"),
#         gr.Textbox(label="Report Text"),
#     ],
#     outputs="text",
# )

from transformers import AutoTokenizer, AutoModelForCausalLM

try:
    tokenizer = AutoTokenizer.from_pretrained("ahmed-7124/dgptAW")
    model = AutoModelForCausalLM.from_pretrained("ahmed-7124/dgptAW")
    print("Model and tokenizer loaded successfully!")
except Exception as e:
    print(f"Error loading tokenizer or model: {e}")
    print("Trying with GPT-2 tokenizer as a fallback...")
    tokenizer = AutoTokenizer.from_pretrained("gpt2")
    model = AutoModelForCausalLM.from_pretrained("ahmed-7124/dgptAW")

from transformers import AutoTokenizer, AutoModelForCausalLM

def answer_medical_query(query):
    try:
        inputs = tokenizer(query, return_tensors="pt")
        outputs = model.generate(
            inputs.input_ids,
            max_length=50,
            temperature=0.7,
            num_return_sequences=1,
            pad_token_id=tokenizer.eos_token_id  # Avoid errors if padding is required
        )
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return response
    except Exception as e:
        return f"An error occurred while generating a response: {e}"



# Unified Gradio Interface
analyze_report_interface = gr.Interface(
    fn=analyze_or_extract_report,
    inputs=[
        gr.Number(label="Patient ID"),
        gr.File(label="Upload PDF Report"),  # Removed optional=True
        gr.Textbox(label="Report Text (Optional)"),
    ],
    outputs="text",
)

# eye_disease_interface = gr.Interface(
#     fn=predict_eye_disease,
#     inputs=gr.Image(label="Upload an Eye Image", type="numpy"),
#     outputs="text",
# )

# Gradio Interface for Medical Query Answering
medical_query_interface = gr.Interface(
    fn=answer_medical_query,
    inputs=gr.Textbox(label="Ask a Medical Term"),
    outputs="text",
)


doctor_space_interface = gr.Interface(
    fn=doctor_space,
    inputs=gr.Number(label="Patient ID"),
    outputs="text",
)

pharmacist_space_interface = gr.Interface(
    fn=pharmacist_space,
    inputs=gr.Number(label="Patient ID"),
    outputs="text",
)
# Gradio Interface for Medical Query Answering
medical_query_interface = gr.Interface(
    fn=answer_medical_query,
    inputs=gr.Textbox(label="Ask a Medical Term"),
    outputs="text",
)

patient_dashboard_interface = gr.Interface(
    fn=patient_dashboard,
    inputs=[ 
        gr.Number(label="Patient ID"),
        gr.Textbox(label="Password", type="password"),
    ],
    outputs="text",
)

doctor_dashboard_interface = gr.Interface(
    fn=doctor_dashboard,
    inputs=gr.Textbox(label="Doctor Password", type="password"),
    outputs="text",
)

consult_doctor_interface = gr.Interface(
    fn=consult_doctor,
    inputs=gr.Textbox(label="Enter Your Query for the Doctor"),
    outputs="text",
)

# Gradio App Layout
with gr.Blocks() as app:
    gr.Markdown("# Medico GPT")
    
    with gr.Tab("Patient Registration"):
        registration_interface.render()
    
    # with gr.Tab("Analyze Medical Report"):
    #     report_analysis_interface.render()
    with gr.Tab("Analyze Medical Report"):
        analyze_report_interface.render()

    with gr.Tab("Doctor Consult"):
        consult_doctor_interface.render()
    
    #with gr.Tab("Extract PDF Report"):
    #   pdf_extraction_interface.render()
    
    
    with gr.Tab("Doctor Space"):
        doctor_space_interface.render()
    
    with gr.Tab("Pharmacist Space"):
        pharmacist_space_interface.render()

    with gr.Tab("Encyclopedia"):
        medical_query_interface.render()

    with gr.Tab("Patient Dashboard"):
        patient_dashboard_interface.render()
    
    with gr.Tab("Doctor Dashboard"):
        doctor_dashboard_interface.render()
    

# Launch the app
app.launch(share=True)