File size: 6,884 Bytes
8df396a
 
afd3d9f
8df396a
afd3d9f
030af93
 
8df396a
 
 
 
afd3d9f
 
 
 
 
 
 
8df396a
 
 
 
 
f2b1e48
 
 
 
8df396a
 
030af93
 
 
8df396a
f2b1e48
8df396a
 
 
 
 
 
f2b1e48
8df396a
 
1f303f9
 
8df396a
 
 
 
 
 
 
 
 
 
 
1f303f9
8df396a
 
1f303f9
8df396a
 
0b6b50a
afd3d9f
 
 
 
0b6b50a
afd3d9f
030af93
 
 
 
 
 
 
 
 
 
 
 
 
0e1fd0a
030af93
 
 
 
 
 
 
 
 
 
 
 
 
 
0e1fd0a
 
030af93
 
 
 
 
 
 
 
 
 
 
 
0e1fd0a
 
030af93
 
0e1fd0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124f9a0
0e1fd0a
 
 
 
 
 
 
 
124f9a0
0e1fd0a
 
 
124f9a0
 
 
8df396a
205a28b
 
 
 
030af93
 
 
 
205a28b
0b6b50a
030af93
0b6b50a
030af93
 
 
 
 
 
 
 
 
 
 
 
 
 
8df396a
0e1fd0a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr
import tensorflow as tf
import pdfplumber
from transformers import pipeline
import timm
import torch
import pandas as pd

# Load pre-trained zero-shot model for text classification
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")

# Pre-trained ResNet50 model for X-ray or image analysis
image_model = timm.create_model('resnet50', pretrained=True)
image_model.eval()

# Load saved TensorFlow eye disease detection model
eye_model = tf.keras.models.load_model('model.h5')

# Patient database
patients_db = []

# Disease details for medical report analyzer
disease_details = {
    "anemia": {"medication": "Iron supplements", "precaution": "Eat iron-rich foods", "doctor": "Hematologist"},
    "viral infection": {"medication": "Antiviral drugs", "precaution": "Stay hydrated", "doctor": "Infectious Disease Specialist"},
    "liver disease": {"medication": "Hepatoprotective drugs", "precaution": "Avoid alcohol", "doctor": "Hepatologist"},
    "diabetes": {"medication": "Metformin or insulin", "precaution": "Monitor sugar levels", "doctor": "Endocrinologist"},
}

# Passwords
doctor_password = "doctor123"

# Functions
def register_patient(name, age, gender, password):
    patient_id = len(patients_db) + 1
    patients_db.append({
        "ID": patient_id,
        "Name": name,
        "Age": age,
        "Gender": gender,
        "Password": password,
        "Diagnosis": "",
        "Medications": "",
        "Precautions": "",
        "Doctor": ""
    })
    return f"βœ… Patient {name} registered successfully. Patient ID: {patient_id}"

def analyze_report(patient_id, report_text):
    candidate_labels = list(disease_details.keys())
    result = classifier(report_text, candidate_labels)
    diagnosis = result['labels'][0]

    # Update patient's record
    medication = disease_details[diagnosis]['medication']
    precaution = disease_details[diagnosis]['precaution']
    doctor = disease_details[diagnosis]['doctor']
    for patient in patients_db:
        if patient['ID'] == patient_id:
            patient.update(Diagnosis=diagnosis, Medications=medication, Precautions=precaution, Doctor=doctor)
    return f"πŸ” Diagnosis: {diagnosis}"

def extract_pdf_report(pdf):
    text = ""
    with pdfplumber.open(pdf.name) as pdf_file:
        for page in pdf_file.pages:
            text += page.extract_text()
    return text

def predict_eye_disease(input_image):
    input_image = tf.image.resize(input_image, [224, 224]) / 255.0
    input_image = tf.expand_dims(input_image, 0)
    predictions = eye_model.predict(input_image)
    labels = ['Cataract', 'Conjunctivitis', 'Glaucoma', 'Normal']
    confidence_scores = {labels[i]: round(predictions[0][i] * 100, 2) for i in range(len(labels))}
    if confidence_scores['Normal'] > 50:
        return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%"
    return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()])

def doctor_space(patient_id):
    for patient in patients_db:
        if patient["ID"] == patient_id:
            return f"⚠ Precautions: {patient['Precautions']}\nπŸ‘©β€βš• Recommended Doctor: {patient['Doctor']}"
    return "❌ Patient not found. Please check the ID."

def pharmacist_space(patient_id):
    for patient in patients_db:
        if patient["ID"] == patient_id:
            return f"πŸ’Š Medications: {patient['Medications']}"
    return "❌ Patient not found. Please check the ID."

def patient_dashboard(patient_id, password):
    for patient in patients_db:
        if patient["ID"] == patient_id and patient["Password"] == password:
            return (f"🩺 Name: {patient['Name']}\n"
                    f"πŸ“‹ Diagnosis: {patient['Diagnosis']}\n"
                    f"πŸ’Š Medications: {patient['Medications']}\n"
                    f"⚠ Precautions: {patient['Precautions']}\n"
                    f"πŸ‘©β€βš• Recommended Doctor: {patient['Doctor']}")
    return "❌ Access Denied: Invalid ID or Password."

def doctor_dashboard(password):
    if password != doctor_password:
        return "❌ Access Denied: Incorrect Password"
    if not patients_db:
        return "No patient records available."
    details = []
    for patient in patients_db:
        details.append(f"🩺 Name: {patient['Name']}\n"
                       f"πŸ“‹ Diagnosis: {patient['Diagnosis']}\n"
                       f"πŸ’Š Medications: {patient['Medications']}\n"
                       f"⚠ Precautions: {patient['Precautions']}\n"
                       f"πŸ‘©β€βš• Recommended Doctor: {patient['Doctor']}")
    return "\n\n".join(details)

# Gradio Interfaces
registration_interface = gr.Interface(
    fn=register_patient,
    inputs=[
        gr.Textbox(label="Patient Name"),
        gr.Number(label="Age"),
        gr.Radio(label="Gender", choices=["Male", "Female", "Other"]),
        gr.Textbox(label="Set Password", type="password"),
    ],
    outputs="text",
)

pdf_extraction_interface = gr.Interface(
    fn=extract_pdf_report,
    inputs=gr.File(label="Upload PDF Report"),
    outputs="text",
)

report_analysis_interface = gr.Interface(
    fn=analyze_report,
    inputs=[
        gr.Number(label="Patient ID"),
        gr.Textbox(label="Report Text"),
    ],
    outputs="text",
)

eye_disease_interface = gr.Interface(
    fn=predict_eye_disease,
    inputs=gr.Image(label="Upload an Eye Image", type="numpy"),
    outputs="text",
)

doctor_space_interface = gr.Interface(
    fn=doctor_space,
    inputs=gr.Number(label="Patient ID"),
    outputs="text",
)

pharmacist_space_interface = gr.Interface(
    fn=pharmacist_space,
    inputs=gr.Number(label="Patient ID"),
    outputs="text",
)

patient_dashboard_interface = gr.Interface(
    fn=patient_dashboard,
    inputs=[
        gr.Number(label="Patient ID"),
        gr.Textbox(label="Password", type="password"),
    ],
    outputs="text",
)

doctor_dashboard_interface = gr.Interface(
    fn=doctor_dashboard,
    inputs=gr.Textbox(label="Doctor Password", type="password"),
    outputs="text",
)

# Gradio App Layout
with gr.Blocks() as app:
    gr.Markdown("# Medico GPT")
    
    with gr.Tab("Patient Registration"):
        registration_interface.render()
    
    with gr.Tab("Analyze Medical Report"):
        report_analysis_interface.render()
    
    with gr.Tab("Extract PDF Report"):
        pdf_extraction_interface.render()
    
    with gr.Tab("Ophthalmologist Space"):
        eye_disease_interface.render()
    
    with gr.Tab("Doctor Space"):
        doctor_space_interface.render()
    
    with gr.Tab("Pharmacist Space"):
        pharmacist_space_interface.render()
    
    with gr.Tab("Patient Dashboard"):
        patient_dashboard_interface.render()
    
    with gr.Tab("Doctor Dashboard"):
        doctor_dashboard_interface.render()

app.launch(share=True)