File size: 22,479 Bytes
8bf4208 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting sentencepiece\n",
" Using cached sentencepiece-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.7 kB)\n",
"Downloading sentencepiece-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m49.7 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hInstalling collected packages: sentencepiece\n",
"Successfully installed sentencepiece-0.2.0\n"
]
}
],
"source": [
"!pip install sentencepiece"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting langsmith\n",
" Downloading langsmith-0.1.104-py3-none-any.whl.metadata (13 kB)\n",
"Requirement already satisfied: httpx<1,>=0.23.0 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from langsmith) (0.27.0)\n",
"Requirement already satisfied: orjson<4.0.0,>=3.9.14 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from langsmith) (3.10.7)\n",
"Requirement already satisfied: pydantic<3,>=1 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from langsmith) (2.8.2)\n",
"Requirement already satisfied: requests<3,>=2 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from langsmith) (2.32.2)\n",
"Requirement already satisfied: anyio in /home/sukhera/miniconda3/lib/python3.12/site-packages (from httpx<1,>=0.23.0->langsmith) (4.4.0)\n",
"Requirement already satisfied: certifi in /home/sukhera/miniconda3/lib/python3.12/site-packages (from httpx<1,>=0.23.0->langsmith) (2024.7.4)\n",
"Requirement already satisfied: httpcore==1.* in /home/sukhera/miniconda3/lib/python3.12/site-packages (from httpx<1,>=0.23.0->langsmith) (1.0.5)\n",
"Requirement already satisfied: idna in /home/sukhera/miniconda3/lib/python3.12/site-packages (from httpx<1,>=0.23.0->langsmith) (3.7)\n",
"Requirement already satisfied: sniffio in /home/sukhera/miniconda3/lib/python3.12/site-packages (from httpx<1,>=0.23.0->langsmith) (1.3.1)\n",
"Requirement already satisfied: h11<0.15,>=0.13 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from httpcore==1.*->httpx<1,>=0.23.0->langsmith) (0.14.0)\n",
"Requirement already satisfied: annotated-types>=0.4.0 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from pydantic<3,>=1->langsmith) (0.7.0)\n",
"Requirement already satisfied: pydantic-core==2.20.1 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from pydantic<3,>=1->langsmith) (2.20.1)\n",
"Requirement already satisfied: typing-extensions>=4.6.1 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from pydantic<3,>=1->langsmith) (4.12.2)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from requests<3,>=2->langsmith) (2.0.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from requests<3,>=2->langsmith) (2.2.2)\n",
"Downloading langsmith-0.1.104-py3-none-any.whl (149 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m149.1/149.1 kB\u001b[0m \u001b[31m22.4 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hInstalling collected packages: langsmith\n",
"Successfully installed langsmith-0.1.104\n"
]
}
],
"source": [
"!pip install -U langsmith"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sukhera/miniconda3/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"import os\n",
"import PyPDF2\n",
"from transformers import BertTokenizer, BertModel\n",
"from transformers import LongformerModel, LongformerTokenizer\n",
"from transformers import BigBirdModel, BigBirdTokenizer\n",
"import numpy as np\n",
"from groq import Groq\n",
"import gradio as gr\n",
"from pathlib import Path\n",
"import torch\n",
"import json\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from langsmith import Client\n",
"\n",
"# Initialize the LangSmith Client\n",
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"os.environ[\"LANGCHAIN_API_KEY\"] = \"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\"\n",
"client = Client()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sukhera/miniconda3/lib/python3.12/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
" warnings.warn(\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
"A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n"
]
}
],
"source": [
"# Load BERT tokenizer and model\n",
"tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')\n",
"model = BertModel.from_pretrained('bert-base-uncased')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Load the BigBird model and tokenizer\n",
"tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')\n",
"model = BigBirdModel.from_pretrained('google/bigbird-roberta-base')\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"#longformer\n",
"# Load the Longformer model and tokenizer\n",
"tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096')\n",
"model = LongformerModel.from_pretrained('allenai/longformer-base-4096')\n"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"#longFormer\n",
"\n",
"def get_longformer_embedding(text):\n",
" # Tokenize the text\n",
" inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=4096)\n",
" \n",
" # Get the embeddings from Longformer\n",
" with torch.no_grad():\n",
" outputs = model(**inputs)\n",
" \n",
" # Use the [CLS] token's embedding as the aggregate representation\n",
" cls_embedding = outputs.last_hidden_state[:, 0, :].numpy()\n",
" \n",
" return cls_embedding"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# BIGBIRD\n",
"def get_bigbird_embedding(text):\n",
" # Tokenize the text\n",
" inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=4096)\n",
" \n",
" # Get the embeddings from BigBird\n",
" with torch.no_grad():\n",
" outputs = model(**inputs)\n",
" \n",
" # Use the [CLS] token's embedding as the aggregate representation\n",
" cls_embedding = outputs.last_hidden_state[:, 0, :].numpy()\n",
" \n",
" return cls_embedding"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def get_bert_embedding(text):\n",
" # Tokenize the text\n",
" inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=512)\n",
" \n",
" # Get the embeddings from BERT\n",
" with torch.no_grad():\n",
" outputs = model(**inputs)\n",
" \n",
" # Use the [CLS] token's embedding as the aggregate representation\n",
" cls_embedding = outputs.last_hidden_state[:, 0, :].numpy()\n",
" \n",
" return cls_embedding\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def process_folder(file):\n",
" folder_path = os.path.dirname(file.name) # Get the directory of the selected file\n",
" files = os.listdir(folder_path) # List all files in the directory\n",
" file_paths = [os.path.join(folder_path, f) for f in files] # Get full paths of all files\n",
" return f\"Files in folder: {', '.join(files)}\""
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Function to extract text from a PDF\n",
"def extract_text_from_pdf(pdf_file):\n",
" text = ''\n",
" with open(pdf_file, 'rb') as file:\n",
" reader = PyPDF2.PdfReader(file)\n",
" for page in reader.pages:\n",
" text += page.extract_text() or ''\n",
" return text\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"cluster_emb={}"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"\n",
"def calculate_cosine(embedding1, embedding2):\n",
" # Calculate the dot product and magnitudes of the embeddings\n",
" dot_product = np.dot(embedding1, embedding2)\n",
" magnitude1 = np.linalg.norm(embedding1)\n",
" magnitude2 = np.linalg.norm(embedding2)\n",
" \n",
" # Calculate cosine similarity\n",
" similarity = dot_product / (magnitude1 * magnitude2)\n",
" return similarity"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"def foo(files, JD):\n",
" # Extract text and compute embeddings for job description using different models\n",
" text_jd = extract_text_from_pdf(JD) \n",
" JD_embedding_bert = get_bert_embedding(text_jd).flatten() # Flatten to match the dimension\n",
" JD_embedding_longformer = get_longformer_embedding(text_jd).flatten()\n",
" JD_embedding_bigbird = get_bigbird_embedding(text_jd).flatten()\n",
"\n",
" sim = []\n",
" \n",
" for d in files:\n",
" text = extract_text_from_pdf(d)\n",
" # Compute embeddings for the resume using different models\n",
" resume_embedding_bert = get_bert_embedding(text).flatten() # Fixed function call\n",
" resume_embedding_longformer = get_longformer_embedding(text).flatten()\n",
" resume_embedding_bigbird = get_bigbird_embedding(text).flatten()\n",
" # Calculate cosine similarity for each model\n",
" similarity_bert = calculate_cosine(resume_embedding_bert, JD_embedding_bert)\n",
" similarity_longformer = calculate_cosine(resume_embedding_longformer, JD_embedding_longformer)\n",
" similarity_bigbird = calculate_cosine(resume_embedding_bigbird, JD_embedding_bigbird)\n",
" # Append the results to the array\n",
" sim.append(f\"\\nFile: {d.name:}\\n\"\n",
" f\"Bert Similarity: {similarity_bert:.4f}\\n\"\n",
" f\"Longformer Similarity: {similarity_longformer:.4f}\\n\"\n",
" f\"BigBird Similarity: {similarity_bigbird:.4f}\\n\")\n",
" \n",
" \n",
" \n",
" return \"\\n\".join(sim) # Join the list into a single string for Gradio output\n"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sukhera/miniconda3/lib/python3.12/site-packages/transformers/tokenization_utils_base.py:2888: UserWarning: `max_length` is ignored when `padding`=`True` and there is no truncation strategy. To pad to max length, use `padding='max_length'`.\n",
" warnings.warn(\n",
"/home/sukhera/miniconda3/lib/python3.12/site-packages/transformers/tokenization_utils_base.py:2888: UserWarning: `max_length` is ignored when `padding`=`True` and there is no truncation strategy. To pad to max length, use `padding='max_length'`.\n",
" warnings.warn(\n"
]
}
],
"source": [
"\n",
"with gr.Blocks() as func:\n",
" inputs = [gr.File(file_count=\"multiple\", label=\"Upload Resume Files\"), gr.File(label=\"Upload Job Description\")]\n",
" outputs = gr.Textbox(label=\"Similarity Scores\")\n",
" show = gr.Button(value=\"Calculate Similarity\")\n",
" show.click(foo, inputs, outputs)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rerunning server... use `close()` to stop if you need to change `launch()` parameters.\n",
"----\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"func.launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|