File size: 22,479 Bytes
8bf4208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 63,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collecting sentencepiece\n",
      "  Using cached sentencepiece-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.7 kB)\n",
      "Downloading sentencepiece-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
      "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m49.7 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
      "\u001b[?25hInstalling collected packages: sentencepiece\n",
      "Successfully installed sentencepiece-0.2.0\n"
     ]
    }
   ],
   "source": [
    "!pip install sentencepiece"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collecting langsmith\n",
      "  Downloading langsmith-0.1.104-py3-none-any.whl.metadata (13 kB)\n",
      "Requirement already satisfied: httpx<1,>=0.23.0 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from langsmith) (0.27.0)\n",
      "Requirement already satisfied: orjson<4.0.0,>=3.9.14 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from langsmith) (3.10.7)\n",
      "Requirement already satisfied: pydantic<3,>=1 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from langsmith) (2.8.2)\n",
      "Requirement already satisfied: requests<3,>=2 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from langsmith) (2.32.2)\n",
      "Requirement already satisfied: anyio in /home/sukhera/miniconda3/lib/python3.12/site-packages (from httpx<1,>=0.23.0->langsmith) (4.4.0)\n",
      "Requirement already satisfied: certifi in /home/sukhera/miniconda3/lib/python3.12/site-packages (from httpx<1,>=0.23.0->langsmith) (2024.7.4)\n",
      "Requirement already satisfied: httpcore==1.* in /home/sukhera/miniconda3/lib/python3.12/site-packages (from httpx<1,>=0.23.0->langsmith) (1.0.5)\n",
      "Requirement already satisfied: idna in /home/sukhera/miniconda3/lib/python3.12/site-packages (from httpx<1,>=0.23.0->langsmith) (3.7)\n",
      "Requirement already satisfied: sniffio in /home/sukhera/miniconda3/lib/python3.12/site-packages (from httpx<1,>=0.23.0->langsmith) (1.3.1)\n",
      "Requirement already satisfied: h11<0.15,>=0.13 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from httpcore==1.*->httpx<1,>=0.23.0->langsmith) (0.14.0)\n",
      "Requirement already satisfied: annotated-types>=0.4.0 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from pydantic<3,>=1->langsmith) (0.7.0)\n",
      "Requirement already satisfied: pydantic-core==2.20.1 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from pydantic<3,>=1->langsmith) (2.20.1)\n",
      "Requirement already satisfied: typing-extensions>=4.6.1 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from pydantic<3,>=1->langsmith) (4.12.2)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from requests<3,>=2->langsmith) (2.0.4)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/sukhera/miniconda3/lib/python3.12/site-packages (from requests<3,>=2->langsmith) (2.2.2)\n",
      "Downloading langsmith-0.1.104-py3-none-any.whl (149 kB)\n",
      "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m149.1/149.1 kB\u001b[0m \u001b[31m22.4 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
      "\u001b[?25hInstalling collected packages: langsmith\n",
      "Successfully installed langsmith-0.1.104\n"
     ]
    }
   ],
   "source": [
    "!pip install -U langsmith"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/sukhera/miniconda3/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import PyPDF2\n",
    "from transformers import BertTokenizer, BertModel\n",
    "from transformers import LongformerModel, LongformerTokenizer\n",
    "from transformers import BigBirdModel, BigBirdTokenizer\n",
    "import numpy as np\n",
    "from groq import Groq\n",
    "import gradio as gr\n",
    "from pathlib import Path\n",
    "import torch\n",
    "import json\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langsmith import Client\n",
    "\n",
    "# Initialize the LangSmith Client\n",
    "os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
    "os.environ[\"LANGCHAIN_API_KEY\"] = \"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\"\n",
    "client = Client()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/sukhera/miniconda3/lib/python3.12/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
      "  warnings.warn(\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n"
     ]
    }
   ],
   "source": [
    "# Load BERT tokenizer and model\n",
    "tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')\n",
    "model = BertModel.from_pretrained('bert-base-uncased')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load the BigBird model and tokenizer\n",
    "tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')\n",
    "model = BigBirdModel.from_pretrained('google/bigbird-roberta-base')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "#longformer\n",
    "# Load the Longformer model and tokenizer\n",
    "tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096')\n",
    "model = LongformerModel.from_pretrained('allenai/longformer-base-4096')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [],
   "source": [
    "#longFormer\n",
    "\n",
    "def get_longformer_embedding(text):\n",
    "    # Tokenize the text\n",
    "    inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=4096)\n",
    "    \n",
    "    # Get the embeddings from Longformer\n",
    "    with torch.no_grad():\n",
    "        outputs = model(**inputs)\n",
    "    \n",
    "    # Use the [CLS] token's embedding as the aggregate representation\n",
    "    cls_embedding = outputs.last_hidden_state[:, 0, :].numpy()\n",
    "    \n",
    "    return cls_embedding"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# BIGBIRD\n",
    "def get_bigbird_embedding(text):\n",
    "    # Tokenize the text\n",
    "    inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=4096)\n",
    "    \n",
    "    # Get the embeddings from BigBird\n",
    "    with torch.no_grad():\n",
    "        outputs = model(**inputs)\n",
    "    \n",
    "    # Use the [CLS] token's embedding as the aggregate representation\n",
    "    cls_embedding = outputs.last_hidden_state[:, 0, :].numpy()\n",
    "    \n",
    "    return cls_embedding"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_bert_embedding(text):\n",
    "    # Tokenize the text\n",
    "    inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=512)\n",
    "    \n",
    "    # Get the embeddings from BERT\n",
    "    with torch.no_grad():\n",
    "        outputs = model(**inputs)\n",
    "    \n",
    "    # Use the [CLS] token's embedding as the aggregate representation\n",
    "    cls_embedding = outputs.last_hidden_state[:, 0, :].numpy()\n",
    "    \n",
    "    return cls_embedding\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "def process_folder(file):\n",
    "    folder_path = os.path.dirname(file.name)  # Get the directory of the selected file\n",
    "    files = os.listdir(folder_path)  # List all files in the directory\n",
    "    file_paths = [os.path.join(folder_path, f) for f in files]  # Get full paths of all files\n",
    "    return f\"Files in folder: {', '.join(files)}\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Function to extract text from a PDF\n",
    "def extract_text_from_pdf(pdf_file):\n",
    "    text = ''\n",
    "    with open(pdf_file, 'rb') as file:\n",
    "        reader = PyPDF2.PdfReader(file)\n",
    "        for page in reader.pages:\n",
    "            text += page.extract_text() or ''\n",
    "    return text\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "cluster_emb={}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "def calculate_cosine(embedding1, embedding2):\n",
    "    # Calculate the dot product and magnitudes of the embeddings\n",
    "    dot_product = np.dot(embedding1, embedding2)\n",
    "    magnitude1 = np.linalg.norm(embedding1)\n",
    "    magnitude2 = np.linalg.norm(embedding2)\n",
    "    \n",
    "    # Calculate cosine similarity\n",
    "    similarity = dot_product / (magnitude1 * magnitude2)\n",
    "    return similarity"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [],
   "source": [
    "def foo(files, JD):\n",
    "    # Extract text and compute embeddings for job description using different models\n",
    "    text_jd = extract_text_from_pdf(JD)    \n",
    "    JD_embedding_bert = get_bert_embedding(text_jd).flatten()  # Flatten to match the dimension\n",
    "    JD_embedding_longformer = get_longformer_embedding(text_jd).flatten()\n",
    "    JD_embedding_bigbird = get_bigbird_embedding(text_jd).flatten()\n",
    "\n",
    "    sim = []\n",
    "    \n",
    "    for d in files:\n",
    "        text = extract_text_from_pdf(d)\n",
    "        # Compute embeddings for the resume using different models\n",
    "        resume_embedding_bert = get_bert_embedding(text).flatten()  # Fixed function call\n",
    "        resume_embedding_longformer = get_longformer_embedding(text).flatten()\n",
    "        resume_embedding_bigbird = get_bigbird_embedding(text).flatten()\n",
    "        # Calculate cosine similarity for each model\n",
    "        similarity_bert = calculate_cosine(resume_embedding_bert, JD_embedding_bert)\n",
    "        similarity_longformer = calculate_cosine(resume_embedding_longformer, JD_embedding_longformer)\n",
    "        similarity_bigbird = calculate_cosine(resume_embedding_bigbird, JD_embedding_bigbird)\n",
    "        # Append the results to the array\n",
    "        sim.append(f\"\\nFile: {d.name:}\\n\"\n",
    "                   f\"Bert Similarity: {similarity_bert:.4f}\\n\"\n",
    "                   f\"Longformer Similarity: {similarity_longformer:.4f}\\n\"\n",
    "                   f\"BigBird Similarity: {similarity_bigbird:.4f}\\n\")\n",
    "        \n",
    "    \n",
    "    \n",
    "    return \"\\n\".join(sim)  # Join the list into a single string for Gradio output\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/sukhera/miniconda3/lib/python3.12/site-packages/transformers/tokenization_utils_base.py:2888: UserWarning: `max_length` is ignored when `padding`=`True` and there is no truncation strategy. To pad to max length, use `padding='max_length'`.\n",
      "  warnings.warn(\n",
      "/home/sukhera/miniconda3/lib/python3.12/site-packages/transformers/tokenization_utils_base.py:2888: UserWarning: `max_length` is ignored when `padding`=`True` and there is no truncation strategy. To pad to max length, use `padding='max_length'`.\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "\n",
    "with gr.Blocks() as func:\n",
    "    inputs = [gr.File(file_count=\"multiple\", label=\"Upload Resume Files\"), gr.File(label=\"Upload Job Description\")]\n",
    "    outputs = gr.Textbox(label=\"Similarity Scores\")\n",
    "    show = gr.Button(value=\"Calculate Similarity\")\n",
    "    show.click(foo, inputs, outputs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Rerunning server... use `close()` to stop if you need to change `launch()` parameters.\n",
      "----\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "func.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}