Spaces:
Sleeping
Sleeping
File size: 13,227 Bytes
5fbe234 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import pandas as pd
import numpy as np
from plotly.subplots import make_subplots
import plotly.graph_objects as go
import matplotlib.pyplot as plt
import plotly.express as px
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
OPTION_LIST = ['Gender and Churn Distribution','Customer Contract Distribution','Payment Method Distribution','Payment Method Distribution Churn',
'Churn Distribution w.r.t Internet Service and Gender','Dependents Distribution Churn',
'Churn Distribution w.r.t Partners','Churn Distribution w.r.t Senior Citizens',
'Churn Distribution w.r.t Online Security','Churn Distribution w.r.t Paperless Billing',
'Churn Distribution w.r.t Tech Support','Churn Distribution w.r.t Phone Service',
'Tenure vs. Churn']
MODEL_SELECTOR = ['KNN','SVC','RF','LR','DT','Adaboost','Gradient Boosting','Voting Classifier']
num_cols = ["tenure", 'MonthlyCharges', 'TotalCharges']
scaler= StandardScaler()
def preprocess(df):
df = df.drop(['customerID'], axis = 1)
df['TotalCharges'] = pd.to_numeric(df.TotalCharges, errors='coerce')
df[np.isnan(df['TotalCharges'])]
df[df['tenure'] == 0].index
df.drop(labels=df[df['tenure'] == 0].index, axis=0, inplace=True)
df[df['tenure'] == 0].index
df.fillna(df["TotalCharges"].mean())
df["SeniorCitizen"]= df["SeniorCitizen"].map({0: "No", 1: "Yes"})
return df
def object_to_int(dataframe_series):
if dataframe_series.dtype=='object':
dataframe_series = LabelEncoder().fit_transform(dataframe_series)
return dataframe_series
def evaluate_voter(test_feature_vector, df,test_size,random_state):
print(df)
df = preprocess(df)
df = df.apply(lambda x: object_to_int(x))
X = df.drop(columns = ['Churn'])
y = df['Churn'].values
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = test_size, random_state = random_state, stratify=y)
df_std = pd.DataFrame(StandardScaler().fit_transform(df[num_cols].astype('float64')),columns=num_cols)
X_train[num_cols] = scaler.fit_transform(X_train[num_cols])
X_test[num_cols] = scaler.transform(X_test[num_cols])
clf1 = GradientBoostingClassifier()
clf2 = LogisticRegression()
clf3 = AdaBoostClassifier()
eclf1 = VotingClassifier(estimators=[('gbc', clf1), ('lr', clf2), ('abc', clf3)], voting='soft')
eclf1.fit(X_train, y_train)
#feeding the feature vector as a test input
predicted_y = eclf1.predict(test_feature_vector)
if predicted_y[0] == 1:
#print('The customer is likely to stop using the services')
return 'Customer is likely to stop using the telecom services'
else:
#print('The customer is likely to continue using the services')
return 'Customer is likely to continue using the telecom services'
def standardize_feature_vector(df,original_df, test_size,random_state):
df = df.drop(['customerID'], axis = 1)
df['TotalCharges'] = pd.to_numeric(df.TotalCharges, errors='coerce')
#Manual label encoding is the only solution here...
df["SeniorCitizen"]= df["SeniorCitizen"].map({"No": 0, "Yes": 1})
df['gender'] = df['gender'].map({'Female':0,'Male':1})
df['Partner'] = df['Partner'].map({"No":0,"Yes":1})
df['Dependents'] = df['Dependents'].map({"No":0,"Yes":1})
df['PhoneService'] = df['PhoneService'].map({"No":0,"Yes":1})
df['MultipleLines'] = df['MultipleLines'].map({"No phone service":1,"No":0,"Yes":2})
df['InternetService'] = df['InternetService'].map({'DSL':0,'Fiber optic':1,'No':2})
df['OnlineSecurity'] = df['OnlineSecurity'].map({'No':0,'Yes':2,'No internet service':1})
df['OnlineBackup'] = df['OnlineBackup'].map({'No':0,'Yes':2,'No internet service':1})
df['DeviceProtection'] = df['DeviceProtection'].map({'No':0,'Yes':2,'No internet service':1})
df['TechSupport'] = df['TechSupport'].map({'No':0,'Yes':2,'No internet service':1})
df['StreamingTV'] = df['StreamingTV'].map({'No':0,'Yes':2,'No internet service':1})
df['StreamingMovies'] = df['StreamingMovies'].map({'No':0,'Yes':2,'No internet service':1})
df['Contract'] = df['Contract'].map({'Month-to-month':0,'One year':1,'Two year':2})
df['PaperlessBilling'] = df['PaperlessBilling'].map({"No":0,"Yes":1})
df['PaymentMethod'] = df['PaymentMethod'].map({'Electronic check':2, 'Mailed check':3,'Bank transfer (automatic)':0,'Credit card (automatic)':1})
#Churn -> No:0, Yes:1
numpy_vector = df.to_numpy()
print(df)
print(numpy_vector)
#passing the vector as a test vector to a trained voting classifier
return evaluate_voter(df,original_df,test_size,random_state)
def standardize_dataframe(filepath,option,test_size,random_state):
df = pd.read_csv(filepath)
#print(df)
df_new = preprocess(df)
#print(df)
#label encoding the dataframe
df_new = df_new.apply(lambda x: object_to_int(x))
#inputs and target selection
X = df_new.drop(columns = ['Churn'])
y = df_new['Churn'].values
#train test split (Allowing the user to choose the optimal train/test split percentage)
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = test_size, random_state = random_state, stratify=y)
#Standardizing the variables
df_std = pd.DataFrame(StandardScaler().fit_transform(df_new[num_cols].astype('float64')),columns=num_cols)
X_train[num_cols] = scaler.fit_transform(X_train[num_cols])
X_test[num_cols] = scaler.transform(X_test[num_cols])
if option == 'KNN':
knn_model = KNeighborsClassifier(n_neighbors = 11)
knn_model.fit(X_train,y_train)
predicted_y = knn_model.predict(X_test)
return accuracy_score(predicted_y,y_test), classification_report(y_test, predicted_y),df_new,df
elif option == 'SVC':
svc_model = SVC(random_state = 1)
svc_model.fit(X_train,y_train)
predicted_y = svc_model.predict(X_test)
return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df
elif option == 'RF':
model_rf = RandomForestClassifier(n_estimators=500 , oob_score = True, n_jobs = -1,
random_state =50, max_features = "auto",
max_leaf_nodes = 30)
model_rf.fit(X_train, y_train)
predicted_y = model_rf.predict(X_test)
return accuracy_score(y_test, predicted_y), classification_report(y_test,predicted_y),df_new,df
elif option == 'LR':
lr_model = LogisticRegression()
lr_model.fit(X_train,y_train)
predicted_y = lr_model.predict(X_test)
return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df
elif option == 'DT':
dt_model = DecisionTreeClassifier()
dt_model.fit(X_train,y_train)
predicted_y = dt_model.predict(X_test)
return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df
elif option == 'Adaboost':
a_model = AdaBoostClassifier()
a_model.fit(X_train,y_train)
predicted_y = a_model.predict(X_test)
return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df
elif option == 'Gradient Boosting':
gb = GradientBoostingClassifier()
gb.fit(X_train, y_train)
predicted_y = gb.predict(X_test)
return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df
elif option == 'Voting Classifier':
clf1 = GradientBoostingClassifier()
clf2 = LogisticRegression()
clf3 = AdaBoostClassifier()
eclf1 = VotingClassifier(estimators=[('gbc', clf1), ('lr', clf2), ('abc', clf3)], voting='soft')
eclf1.fit(X_train, y_train)
predicted_y = eclf1.predict(X_test)
return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df
def visualize(df):
g_labels = ['Male', 'Female']
c_labels = ['No', 'Yes']
# Create subplots: use 'domain' type for Pie subplot
fig1 = make_subplots(rows=1, cols=2, specs=[[{'type':'domain'}, {'type':'domain'}]])
fig1.add_trace(go.Pie(labels=g_labels, values=df['gender'].value_counts(), name="Gender"),
1, 1)
fig1.add_trace(go.Pie(labels=c_labels, values=df['Churn'].value_counts(), name="Churn"),
1, 2)
# Use `hole` to create a donut-like pie chart
fig1.update_traces(hole=.4, hoverinfo="label+percent+name", textfont_size=16)
fig1.update_layout(
title_text="Gender and Churn Distributions",
# Add annotations in the center of the donut pies.
annotations=[dict(text='Gender', x=0.16, y=0.5, font_size=20, showarrow=False),
dict(text='Churn', x=0.84, y=0.5, font_size=20, showarrow=False)])
fig2 = px.histogram(df, x="Churn", color="Contract", barmode="group", title="<b>Customer contract distribution<b>")
fig2.update_layout(width=700, height=500, bargap=0.1)
labels = df['PaymentMethod'].unique()
values = df['PaymentMethod'].value_counts()
fig3 = go.Figure(data=[go.Pie(labels=labels, values=values, hole=.3)])
fig3.update_layout(title_text="<b>Payment Method Distribution</b>")
fig4 = px.histogram(df, x="Churn", color="PaymentMethod", title="<b>Customer Payment Method distribution w.r.t. Churn</b>")
fig4.update_layout(width=700, height=500, bargap=0.1)
fig5 = go.Figure()
fig5.add_trace(go.Bar(
x = [['Churn:No', 'Churn:No', 'Churn:Yes', 'Churn:Yes'],
["Female", "Male", "Female", "Male"]],
y = [965, 992, 219, 240],
name = 'DSL',
))
fig5.add_trace(go.Bar(
x = [['Churn:No', 'Churn:No', 'Churn:Yes', 'Churn:Yes'],
["Female", "Male", "Female", "Male"]],
y = [889, 910, 664, 633],
name = 'Fiber optic',
))
fig5.add_trace(go.Bar(
x = [['Churn:No', 'Churn:No', 'Churn:Yes', 'Churn:Yes'],
["Female", "Male", "Female", "Male"]],
y = [690, 717, 56, 57],
name = 'No Internet',
))
fig5.update_layout(title_text="<b>Churn Distribution w.r.t. Internet Service and Gender</b>")
color_map = {"Yes": "#FF97FF", "No": "#AB63FA"}
fig6 = px.histogram(df, x="Churn", color="Dependents", barmode="group", title="<b>Dependents distribution</b>", color_discrete_map=color_map)
fig6.update_layout(width=700, height=500, bargap=0.1)
color_map = {"Yes": '#FFA15A', "No": '#00CC96'}
fig7 = px.histogram(df, x="Churn", color="Partner", barmode="group", title="<b>Churn distribution w.r.t. Partners</b>", color_discrete_map=color_map)
fig7.update_layout(width=700, height=500, bargap=0.1)
color_map = {"Yes": '#00CC96', "No": '#B6E880'}
fig8 = px.histogram(df, x="Churn", color="SeniorCitizen", title="<b>Churn distribution w.r.t. Senior Citizen</b>", color_discrete_map=color_map)
fig8.update_layout(width=700, height=500, bargap=0.1)
color_map = {"Yes": "#FF97FF", "No": "#AB63FA"}
fig9 = px.histogram(df, x="Churn", color="OnlineSecurity", barmode="group", title="<b>Churn distribution w.r.t Online Security</b>", color_discrete_map=color_map)
fig9.update_layout(width=700, height=500, bargap=0.1)
color_map = {"Yes": '#FFA15A', "No": '#00CC96'}
fig10 = px.histogram(df, x="Churn", color="PaperlessBilling", title="<b>Churn distribution w.r.t. Paperless Billing</b>", color_discrete_map=color_map)
fig10.update_layout(width=700, height=500, bargap=0.1)
fig11 = px.histogram(df, x="Churn", color="TechSupport",barmode="group", title="<b>Churn distribution w.r.t. Tech Support</b>")
fig11.update_layout(width=700, height=500, bargap=0.1)
color_map = {"Yes": '#00CC96', "No": '#B6E880'}
fig12 = px.histogram(df, x="Churn", color="PhoneService", title="<b>Churn Distribution w.r.t. Phone Service</b>", color_discrete_map=color_map)
fig12.update_layout(width=700, height=500, bargap=0.1)
fig13 = px.box(df, x='Churn', y = 'tenure')
fig13.update_yaxes(title_text='Tenure (Months)', row=1, col=1)
fig13.update_xaxes(title_text='Churn', row=1, col=1)
fig13.update_layout(autosize=True, width=750, height=600,
title_font=dict(size=25, family='Courier'),
title='<b>Tenure vs Churn</b>',
)
return fig1,fig2,fig3,fig4,fig5,fig6,fig7,fig8,fig9,fig10,fig11,fig12,fig13
def take_input(filepath):
df = pd.read_csv(filepath)
processed_df = preprocess(df)
fig1,fig2,fig3,fig4,fig5,fig6,fig7,fig8,fig9,fig10,fig11,fig12,fig13 = visualize(processed_df)
return fig1,fig2,fig3,fig4,fig5,fig6,fig7,fig8,fig9,fig10,fig11,fig12,fig13, processed_df |