File size: 13,227 Bytes
5fbe234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import pandas as pd 
import numpy as np 
from plotly.subplots import make_subplots 
import plotly.graph_objects as go 
import matplotlib.pyplot as plt 
import plotly.express as px 
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
OPTION_LIST = ['Gender and Churn Distribution','Customer Contract Distribution','Payment Method Distribution','Payment Method Distribution Churn',
              'Churn Distribution w.r.t Internet Service and Gender','Dependents Distribution Churn',
              'Churn Distribution w.r.t Partners','Churn Distribution w.r.t Senior Citizens',
              'Churn Distribution w.r.t Online Security','Churn Distribution w.r.t Paperless Billing',
              'Churn Distribution w.r.t Tech Support','Churn Distribution w.r.t Phone Service',
              'Tenure vs. Churn']
MODEL_SELECTOR = ['KNN','SVC','RF','LR','DT','Adaboost','Gradient Boosting','Voting Classifier']
num_cols = ["tenure", 'MonthlyCharges', 'TotalCharges']
scaler= StandardScaler()
def preprocess(df): 
    df = df.drop(['customerID'], axis = 1)
    df['TotalCharges'] = pd.to_numeric(df.TotalCharges, errors='coerce')
    df[np.isnan(df['TotalCharges'])]
    df[df['tenure'] == 0].index
    df.drop(labels=df[df['tenure'] == 0].index, axis=0, inplace=True)
    df[df['tenure'] == 0].index
    df.fillna(df["TotalCharges"].mean())
    df["SeniorCitizen"]= df["SeniorCitizen"].map({0: "No", 1: "Yes"})
    return df 
def object_to_int(dataframe_series):
    if dataframe_series.dtype=='object':
        dataframe_series = LabelEncoder().fit_transform(dataframe_series)
    return dataframe_series
def evaluate_voter(test_feature_vector, df,test_size,random_state): 
    print(df)
    df = preprocess(df)
    df = df.apply(lambda x: object_to_int(x))
    X = df.drop(columns = ['Churn'])
    y = df['Churn'].values
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = test_size, random_state = random_state, stratify=y)
    df_std = pd.DataFrame(StandardScaler().fit_transform(df[num_cols].astype('float64')),columns=num_cols)
    X_train[num_cols] = scaler.fit_transform(X_train[num_cols])
    X_test[num_cols] = scaler.transform(X_test[num_cols])
    clf1 = GradientBoostingClassifier()
    clf2 = LogisticRegression()
    clf3 = AdaBoostClassifier()
    eclf1 = VotingClassifier(estimators=[('gbc', clf1), ('lr', clf2), ('abc', clf3)], voting='soft')
    eclf1.fit(X_train, y_train)
    #feeding the feature vector as a test input 
    predicted_y = eclf1.predict(test_feature_vector)
    if predicted_y[0] == 1: 
        #print('The customer is likely to stop using the services')
        return 'Customer is likely to stop using the telecom services'
    else: 
        #print('The customer is likely to continue using the services')
        return 'Customer is likely to continue using the telecom services'


def standardize_feature_vector(df,original_df, test_size,random_state): 
    df = df.drop(['customerID'], axis = 1) 
    df['TotalCharges'] = pd.to_numeric(df.TotalCharges, errors='coerce')
    #Manual label encoding is the only solution here... 
    df["SeniorCitizen"]= df["SeniorCitizen"].map({"No": 0, "Yes": 1})
    df['gender'] = df['gender'].map({'Female':0,'Male':1}) 
    df['Partner'] = df['Partner'].map({"No":0,"Yes":1})
    df['Dependents'] = df['Dependents'].map({"No":0,"Yes":1}) 
    df['PhoneService'] = df['PhoneService'].map({"No":0,"Yes":1}) 
    df['MultipleLines'] = df['MultipleLines'].map({"No phone service":1,"No":0,"Yes":2})
    df['InternetService'] = df['InternetService'].map({'DSL':0,'Fiber optic':1,'No':2}) 
    df['OnlineSecurity'] = df['OnlineSecurity'].map({'No':0,'Yes':2,'No internet service':1}) 
    df['OnlineBackup'] = df['OnlineBackup'].map({'No':0,'Yes':2,'No internet service':1})
    df['DeviceProtection'] = df['DeviceProtection'].map({'No':0,'Yes':2,'No internet service':1})
    df['TechSupport'] = df['TechSupport'].map({'No':0,'Yes':2,'No internet service':1})
    df['StreamingTV'] = df['StreamingTV'].map({'No':0,'Yes':2,'No internet service':1})
    df['StreamingMovies'] = df['StreamingMovies'].map({'No':0,'Yes':2,'No internet service':1})
    df['Contract'] = df['Contract'].map({'Month-to-month':0,'One year':1,'Two year':2})
    df['PaperlessBilling'] = df['PaperlessBilling'].map({"No":0,"Yes":1})
    df['PaymentMethod'] = df['PaymentMethod'].map({'Electronic check':2, 'Mailed check':3,'Bank transfer (automatic)':0,'Credit card (automatic)':1})
    #Churn -> No:0, Yes:1 
    numpy_vector = df.to_numpy() 
    print(df)
    print(numpy_vector)
    #passing the vector as a test vector to a trained voting classifier
    return evaluate_voter(df,original_df,test_size,random_state)


def standardize_dataframe(filepath,option,test_size,random_state): 
    df = pd.read_csv(filepath)
    #print(df)
    df_new = preprocess(df)
    #print(df)
    #label encoding the dataframe 
    df_new = df_new.apply(lambda x: object_to_int(x))
    #inputs and target selection 
    X = df_new.drop(columns = ['Churn'])
    y = df_new['Churn'].values
    #train test split (Allowing the user to choose the optimal train/test split percentage)
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = test_size, random_state = random_state, stratify=y)
    #Standardizing the variables 
    df_std = pd.DataFrame(StandardScaler().fit_transform(df_new[num_cols].astype('float64')),columns=num_cols)
    X_train[num_cols] = scaler.fit_transform(X_train[num_cols])
    X_test[num_cols] = scaler.transform(X_test[num_cols])
    if option == 'KNN': 
        knn_model = KNeighborsClassifier(n_neighbors = 11) 
        knn_model.fit(X_train,y_train)
        predicted_y = knn_model.predict(X_test)
        return accuracy_score(predicted_y,y_test), classification_report(y_test, predicted_y),df_new,df
    elif option == 'SVC': 
        svc_model = SVC(random_state = 1)
        svc_model.fit(X_train,y_train)
        predicted_y = svc_model.predict(X_test)
        return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df
    elif option == 'RF': 
        model_rf = RandomForestClassifier(n_estimators=500 , oob_score = True, n_jobs = -1,
                                  random_state =50, max_features = "auto",
                                  max_leaf_nodes = 30)
        model_rf.fit(X_train, y_train)
        predicted_y = model_rf.predict(X_test)
        return accuracy_score(y_test, predicted_y), classification_report(y_test,predicted_y),df_new,df
    elif option == 'LR': 
        lr_model = LogisticRegression()
        lr_model.fit(X_train,y_train)
        predicted_y = lr_model.predict(X_test)
        return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df
    elif option == 'DT': 
        dt_model = DecisionTreeClassifier()
        dt_model.fit(X_train,y_train)
        predicted_y = dt_model.predict(X_test)
        return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df
    elif option == 'Adaboost': 
        a_model = AdaBoostClassifier()
        a_model.fit(X_train,y_train)
        predicted_y = a_model.predict(X_test)
        return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df
    elif option == 'Gradient Boosting': 
        gb = GradientBoostingClassifier()
        gb.fit(X_train, y_train)
        predicted_y = gb.predict(X_test)
        return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df
    elif option == 'Voting Classifier': 
        clf1 = GradientBoostingClassifier()
        clf2 = LogisticRegression()
        clf3 = AdaBoostClassifier()
        eclf1 = VotingClassifier(estimators=[('gbc', clf1), ('lr', clf2), ('abc', clf3)], voting='soft')
        eclf1.fit(X_train, y_train)
        predicted_y = eclf1.predict(X_test)
        return accuracy_score(predicted_y,y_test), classification_report(y_test,predicted_y),df_new,df


def visualize(df): 
    g_labels = ['Male', 'Female']
    c_labels = ['No', 'Yes']
    # Create subplots: use 'domain' type for Pie subplot
    fig1 = make_subplots(rows=1, cols=2, specs=[[{'type':'domain'}, {'type':'domain'}]])
    fig1.add_trace(go.Pie(labels=g_labels, values=df['gender'].value_counts(), name="Gender"),
                  1, 1)
    fig1.add_trace(go.Pie(labels=c_labels, values=df['Churn'].value_counts(), name="Churn"),
                  1, 2)
    # Use `hole` to create a donut-like pie chart
    fig1.update_traces(hole=.4, hoverinfo="label+percent+name", textfont_size=16)
    fig1.update_layout(
        title_text="Gender and Churn Distributions",
        # Add annotations in the center of the donut pies.
        annotations=[dict(text='Gender', x=0.16, y=0.5, font_size=20, showarrow=False),
                     dict(text='Churn', x=0.84, y=0.5, font_size=20, showarrow=False)])
    fig2 = px.histogram(df, x="Churn", color="Contract", barmode="group", title="<b>Customer contract distribution<b>")
    fig2.update_layout(width=700, height=500, bargap=0.1)
    labels = df['PaymentMethod'].unique()
    values = df['PaymentMethod'].value_counts()
    fig3 = go.Figure(data=[go.Pie(labels=labels, values=values, hole=.3)])
    fig3.update_layout(title_text="<b>Payment Method Distribution</b>")
    fig4 = px.histogram(df, x="Churn", color="PaymentMethod", title="<b>Customer Payment Method distribution w.r.t. Churn</b>")
    fig4.update_layout(width=700, height=500, bargap=0.1)
    fig5 = go.Figure()
    fig5.add_trace(go.Bar(
      x = [['Churn:No', 'Churn:No', 'Churn:Yes', 'Churn:Yes'],
           ["Female", "Male", "Female", "Male"]],
      y = [965, 992, 219, 240],
      name = 'DSL',
    ))
    fig5.add_trace(go.Bar(
      x = [['Churn:No', 'Churn:No', 'Churn:Yes', 'Churn:Yes'],
           ["Female", "Male", "Female", "Male"]],
      y = [889, 910, 664, 633],
      name = 'Fiber optic',
    ))
    fig5.add_trace(go.Bar(
      x = [['Churn:No', 'Churn:No', 'Churn:Yes', 'Churn:Yes'],
           ["Female", "Male", "Female", "Male"]],
      y = [690, 717, 56, 57],
      name = 'No Internet',
    ))
    fig5.update_layout(title_text="<b>Churn Distribution w.r.t. Internet Service and Gender</b>")
    color_map = {"Yes": "#FF97FF", "No": "#AB63FA"}
    fig6 = px.histogram(df, x="Churn", color="Dependents", barmode="group", title="<b>Dependents distribution</b>", color_discrete_map=color_map)
    fig6.update_layout(width=700, height=500, bargap=0.1)
    color_map = {"Yes": '#FFA15A', "No": '#00CC96'}
    fig7 = px.histogram(df, x="Churn", color="Partner", barmode="group", title="<b>Churn distribution w.r.t. Partners</b>", color_discrete_map=color_map)
    fig7.update_layout(width=700, height=500, bargap=0.1)
    color_map = {"Yes": '#00CC96', "No": '#B6E880'}
    fig8 = px.histogram(df, x="Churn", color="SeniorCitizen", title="<b>Churn distribution w.r.t. Senior Citizen</b>", color_discrete_map=color_map)
    fig8.update_layout(width=700, height=500, bargap=0.1)
    color_map = {"Yes": "#FF97FF", "No": "#AB63FA"}
    fig9 = px.histogram(df, x="Churn", color="OnlineSecurity", barmode="group", title="<b>Churn distribution w.r.t Online Security</b>", color_discrete_map=color_map)
    fig9.update_layout(width=700, height=500, bargap=0.1)
    color_map = {"Yes": '#FFA15A', "No": '#00CC96'}
    fig10 = px.histogram(df, x="Churn", color="PaperlessBilling",  title="<b>Churn distribution w.r.t. Paperless Billing</b>", color_discrete_map=color_map)
    fig10.update_layout(width=700, height=500, bargap=0.1)
    fig11 = px.histogram(df, x="Churn", color="TechSupport",barmode="group",  title="<b>Churn distribution w.r.t. Tech Support</b>")
    fig11.update_layout(width=700, height=500, bargap=0.1)
    color_map = {"Yes": '#00CC96', "No": '#B6E880'}
    fig12 = px.histogram(df, x="Churn", color="PhoneService", title="<b>Churn Distribution w.r.t. Phone Service</b>", color_discrete_map=color_map)
    fig12.update_layout(width=700, height=500, bargap=0.1)
    fig13 = px.box(df, x='Churn', y = 'tenure')
    fig13.update_yaxes(title_text='Tenure (Months)', row=1, col=1)
    fig13.update_xaxes(title_text='Churn', row=1, col=1)
    fig13.update_layout(autosize=True, width=750, height=600,
        title_font=dict(size=25, family='Courier'),
        title='<b>Tenure vs Churn</b>',
    )
    return fig1,fig2,fig3,fig4,fig5,fig6,fig7,fig8,fig9,fig10,fig11,fig12,fig13  

def take_input(filepath): 
    df = pd.read_csv(filepath)
    processed_df = preprocess(df)
    fig1,fig2,fig3,fig4,fig5,fig6,fig7,fig8,fig9,fig10,fig11,fig12,fig13 = visualize(processed_df)
    return fig1,fig2,fig3,fig4,fig5,fig6,fig7,fig8,fig9,fig10,fig11,fig12,fig13, processed_df