Spaces:
Runtime error
Runtime error
File size: 5,515 Bytes
4da642e c920ba5 4da642e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import streamlit as st
import numpy as np
from pandas import DataFrame
# from keybert import KeyBERT
# For Flair (Keybert)
# from flair.embeddings import TransformerDocumentEmbeddings
import seaborn as sns
# For download buttons
from functionforDownloadButtons import download_button
import os
import json
from kpe_ranker import KpeRanker
st.set_page_config(
page_title="استخراج عبارات کلیدی عهد",
page_icon="🎈",
)
def _max_width_():
max_width_str = f"max-width: 1400px;"
st.markdown(
f"""
<style>
.reportview-container .main .block-container{{
{max_width_str}
}}
</style>
""",
unsafe_allow_html=True,
)
_max_width_()
c30, c31, c32 = st.columns([2.5, 1, 3])
with c30:
# st.image("logo.png", width=400)
st.title("🔑 استخراج عبارات کلیدی")
st.header("")
with st.expander("ℹ️ - About this app", expanded=True):
st.write(
"""
- استخراج عبارات کلیدی، محصولی نوین از شرکت عهد است که در ارزیابیهای صورتگرفته، دقت بیشتری را نسبت به رقبا از خود نشان داده است.
"""
)
st.markdown("")
st.markdown("")
# st.markdown("## **...**")
with st.form(key="my_form"):
ce, c1, ce, c2, c3 = st.columns([0.07, 1, 0.07, 5, 0.07])
with c1:
# if ModelType == "Default (DistilBERT)":
# kw_model = KeyBERT(model=roberta)
@st.cache_resource
def load_model():
return KpeRanker()
kpe_ranker_extractor = load_model()
# else:
# @st.cache(allow_output_mutation=True)
# def load_model():
# return KeyBERT("distilbert-base-nli-mean-tokens")
# kw_model = load_model()
top_N = st.slider(
"# تعداد",
min_value=1,
max_value=30,
value=10,
help="You can choose the number of keywords/keyphrases to display. Between 1 and 30, default number is 10.",
)
# min_Ngrams = st.number_input(
# "Minimum Ngram",
# min_value=1,
# max_value=4,
# help="""The minimum value for the ngram range.
# *Keyphrase_ngram_range* sets the length of the resulting keywords/keyphrases.
# To extract keyphrases, simply set *keyphrase_ngram_range* to (1, 2) or higher depending on the number of words you would like in the resulting keyphrases.""",
# # help="Minimum value for the keyphrase_ngram_range. keyphrase_ngram_range sets the length of the resulting keywords/keyphrases. To extract keyphrases, simply set keyphrase_ngram_range to (1, # 2) or higher depending on the number of words you would like in the resulting keyphrases.",
# )
# max_Ngrams = st.number_input(
# "Maximum Ngram",
# value=2,
# min_value=1,
# max_value=4,
# help="""The maximum value for the keyphrase_ngram_range.
# *Keyphrase_ngram_range* sets the length of the resulting keywords/keyphrases.
# To extract keyphrases, simply set *keyphrase_ngram_range* to (1, 2) or higher depending on the number of words you would like in the resulting keyphrases.""",
# )
# StopWordsCheckbox = st.checkbox(
# "Remove stop words",
# help="Tick this box to remove stop words from the document (currently English only)",
# )
use_ner = st.checkbox(
"NER",
value=True,
help="استفاده از شناسایی موجودیتهای نامدار" )
with c2:
doc = st.text_area(
"متن خود را وارد کنید",
height=510,
)
MAX_WORDS = 500
import re
res = len(re.findall(r"\w+", doc))
if res > MAX_WORDS:
st.warning(
"⚠️ Your text contains "
+ str(res)
+ " words."
+ " Only the first 500 words will be reviewed. Stay tuned as increased allowance is coming! 😊"
)
doc = doc[:MAX_WORDS]
submit_button = st.form_submit_button(label="✨ پردازش")
if not submit_button:
st.stop()
#################################### get keyphrases #######################################################
keywords = kpe_ranker_extractor.extract(text=doc, count=top_N, using_ner=use_ner, return_sorted=True)
# print(keywords)
st.markdown("## **🎈 Check & download results **")
st.header("")
cs, c1, c2, c3, cLast = st.columns([2, 1.5, 1.5, 1.5, 2])
with c1:
CSVButton2 = download_button(keywords, "Data.csv", "📥 Download (.csv)")
with c2:
CSVButton2 = download_button(keywords, "Data.txt", "📥 Download (.txt)")
with c3:
CSVButton2 = download_button(keywords, "Data.json", "📥 Download (.json)")
st.header("")
df = (
DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
.sort_values(by="Relevancy", ascending=False)
.reset_index(drop=True)
)
df.index += 1
# Add styling
cmGreen = sns.light_palette("green", as_cmap=True)
cmRed = sns.light_palette("red", as_cmap=True)
df = df.style.background_gradient(
cmap=cmGreen,
subset=[
"Relevancy",
],
)
c1, c2, c3 = st.columns([1, 3, 1])
format_dictionary = {
"Relevancy": "{:.1%}",
}
df = df.format(format_dictionary)
with c2:
st.table(df)
|