File size: 26,196 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" The distiller to distil the student.
    Adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
"""
import math
import os
import time

import psutil
import torch
from grouped_batch_sampler import GroupedBatchSampler, create_lengths_groups
from lm_seqs_dataset import LmSeqsDataset
from torch import nn
from torch.optim import AdamW
from torch.utils.data import BatchSampler, DataLoader, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm

from transformers import get_linear_schedule_with_warmup
from utils import logger


try:
    from torch.utils.tensorboard import SummaryWriter
except ImportError:
    from tensorboardX import SummaryWriter


class Distiller:
    def __init__(
        self, params: dict, dataset: LmSeqsDataset, token_probs: torch.tensor, student: nn.Module, teacher: nn.Module
    ):
        logger.info("Initializing Distiller")
        self.params = params
        self.dump_path = params.dump_path
        self.multi_gpu = params.multi_gpu
        self.fp16 = params.fp16

        self.student = student
        self.teacher = teacher

        self.student_config = student.config
        self.vocab_size = student.config.vocab_size

        if params.n_gpu <= 1:
            sampler = RandomSampler(dataset)
        else:
            sampler = DistributedSampler(dataset)

        if params.group_by_size:
            groups = create_lengths_groups(lengths=dataset.lengths, k=params.max_model_input_size)
            sampler = GroupedBatchSampler(sampler=sampler, group_ids=groups, batch_size=params.batch_size)
        else:
            sampler = BatchSampler(sampler=sampler, batch_size=params.batch_size, drop_last=False)

        self.dataloader = DataLoader(dataset=dataset, batch_sampler=sampler, collate_fn=dataset.batch_sequences)

        self.temperature = params.temperature
        assert self.temperature > 0.0

        self.alpha_ce = params.alpha_ce
        self.alpha_mlm = params.alpha_mlm
        self.alpha_clm = params.alpha_clm
        self.alpha_mse = params.alpha_mse
        self.alpha_cos = params.alpha_cos

        self.mlm = params.mlm
        if self.mlm:
            logger.info("Using MLM loss for LM step.")
            self.mlm_mask_prop = params.mlm_mask_prop
            assert 0.0 <= self.mlm_mask_prop <= 1.0
            assert params.word_mask + params.word_keep + params.word_rand == 1.0
            self.pred_probs = torch.FloatTensor([params.word_mask, params.word_keep, params.word_rand])
            self.pred_probs = self.pred_probs.to(f"cuda:{params.local_rank}") if params.n_gpu > 0 else self.pred_probs
            self.token_probs = token_probs.to(f"cuda:{params.local_rank}") if params.n_gpu > 0 else token_probs
            if self.fp16:
                self.pred_probs = self.pred_probs.half()
                self.token_probs = self.token_probs.half()
        else:
            logger.info("Using CLM loss for LM step.")

        self.epoch = 0
        self.n_iter = 0
        self.n_total_iter = 0
        self.n_sequences_epoch = 0
        self.total_loss_epoch = 0
        self.last_loss = 0
        self.last_loss_ce = 0
        self.last_loss_mlm = 0
        self.last_loss_clm = 0
        if self.alpha_mse > 0.0:
            self.last_loss_mse = 0
        if self.alpha_cos > 0.0:
            self.last_loss_cos = 0
        self.last_log = 0

        self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean")
        self.lm_loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
        if self.alpha_mse > 0.0:
            self.mse_loss_fct = nn.MSELoss(reduction="sum")
        if self.alpha_cos > 0.0:
            self.cosine_loss_fct = nn.CosineEmbeddingLoss(reduction="mean")

        logger.info("--- Initializing model optimizer")
        assert params.gradient_accumulation_steps >= 1
        self.num_steps_epoch = len(self.dataloader)
        num_train_optimization_steps = (
            int(self.num_steps_epoch / params.gradient_accumulation_steps * params.n_epoch) + 1
        )

        no_decay = ["bias", "LayerNorm.weight"]
        optimizer_grouped_parameters = [
            {
                "params": [
                    p for n, p in student.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad
                ],
                "weight_decay": params.weight_decay,
            },
            {
                "params": [
                    p for n, p in student.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad
                ],
                "weight_decay": 0.0,
            },
        ]
        logger.info(
            "------ Number of trainable parameters (student): %i"
            % sum([p.numel() for p in self.student.parameters() if p.requires_grad])
        )
        logger.info("------ Number of parameters (student): %i" % sum([p.numel() for p in self.student.parameters()]))
        self.optimizer = AdamW(
            optimizer_grouped_parameters, lr=params.learning_rate, eps=params.adam_epsilon, betas=(0.9, 0.98)
        )

        warmup_steps = math.ceil(num_train_optimization_steps * params.warmup_prop)
        self.scheduler = get_linear_schedule_with_warmup(
            self.optimizer, num_warmup_steps=warmup_steps, num_training_steps=num_train_optimization_steps
        )

        if self.fp16:
            try:
                from apex import amp
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
            logger.info(f"Using fp16 training: {self.params.fp16_opt_level} level")
            self.student, self.optimizer = amp.initialize(
                self.student, self.optimizer, opt_level=self.params.fp16_opt_level
            )
            self.teacher = self.teacher.half()

        if self.multi_gpu:
            if self.fp16:
                from apex.parallel import DistributedDataParallel

                logger.info("Using apex.parallel.DistributedDataParallel for distributed training.")
                self.student = DistributedDataParallel(self.student)
            else:
                from torch.nn.parallel import DistributedDataParallel

                logger.info("Using nn.parallel.DistributedDataParallel for distributed training.")
                self.student = DistributedDataParallel(
                    self.student,
                    device_ids=[params.local_rank],
                    output_device=params.local_rank,
                    find_unused_parameters=True,
                )

        self.is_master = params.is_master
        if self.is_master:
            logger.info("--- Initializing Tensorboard")
            self.tensorboard = SummaryWriter(log_dir=os.path.join(self.dump_path, "log", "train"))
            self.tensorboard.add_text(tag="config/training", text_string=str(self.params), global_step=0)
            self.tensorboard.add_text(tag="config/student", text_string=str(self.student_config), global_step=0)

    def prepare_batch_mlm(self, batch):
        """
        Prepare the batch: from the token_ids and the lengths, compute the attention mask and the masked label for MLM.

        Input:
        ------
            batch: `Tuple`
                token_ids: `torch.tensor(bs, seq_length)` - The token ids for each of the sequence. It is padded.
                lengths: `torch.tensor(bs)` - The lengths of each of the sequences in the batch.

        Output:
        -------
            token_ids: `torch.tensor(bs, seq_length)` - The token ids after the modifications for MLM.
            attn_mask: `torch.tensor(bs, seq_length)` - The attention mask for the self-attention.
            mlm_labels: `torch.tensor(bs, seq_length)` - The masked language modeling labels. There is a -100 where there is nothing to predict.
        """
        token_ids, lengths = batch
        token_ids, lengths = self.round_batch(x=token_ids, lengths=lengths)
        assert token_ids.size(0) == lengths.size(0)

        attn_mask = torch.arange(token_ids.size(1), dtype=torch.long, device=lengths.device) < lengths[:, None]

        bs, max_seq_len = token_ids.size()
        mlm_labels = token_ids.new(token_ids.size()).copy_(token_ids)

        x_prob = self.token_probs[token_ids.flatten()]
        n_tgt = math.ceil(self.mlm_mask_prop * lengths.sum().item())
        tgt_ids = torch.multinomial(x_prob / x_prob.sum(), n_tgt, replacement=False)
        pred_mask = torch.zeros(
            bs * max_seq_len, dtype=torch.bool, device=token_ids.device
        )  # previously `dtype=torch.uint8`, cf pytorch 1.2.0 compatibility
        pred_mask[tgt_ids] = 1
        pred_mask = pred_mask.view(bs, max_seq_len)

        pred_mask[token_ids == self.params.special_tok_ids["pad_token"]] = 0

        # mask a number of words == 0 [8] (faster with fp16)
        if self.fp16:
            n1 = pred_mask.sum().item()
            if n1 > 8:
                pred_mask = pred_mask.view(-1)
                n2 = max(n1 % 8, 8 * (n1 // 8))
                if n2 != n1:
                    pred_mask[torch.nonzero(pred_mask).view(-1)[: n1 - n2]] = 0
                pred_mask = pred_mask.view(bs, max_seq_len)
                assert pred_mask.sum().item() % 8 == 0, pred_mask.sum().item()

        _token_ids_real = token_ids[pred_mask]
        _token_ids_rand = _token_ids_real.clone().random_(self.vocab_size)
        _token_ids_mask = _token_ids_real.clone().fill_(self.params.special_tok_ids["mask_token"])
        probs = torch.multinomial(self.pred_probs, len(_token_ids_real), replacement=True)
        _token_ids = (
            _token_ids_mask * (probs == 0).long()
            + _token_ids_real * (probs == 1).long()
            + _token_ids_rand * (probs == 2).long()
        )
        token_ids = token_ids.masked_scatter(pred_mask, _token_ids)

        mlm_labels[~pred_mask] = -100  # previously `mlm_labels[1-pred_mask] = -1`, cf pytorch 1.2.0 compatibility

        # sanity checks
        assert 0 <= token_ids.min() <= token_ids.max() < self.vocab_size

        return token_ids, attn_mask, mlm_labels

    def prepare_batch_clm(self, batch):
        """
        Prepare the batch: from the token_ids and the lengths, compute the attention mask and the labels for CLM.

        Input:
        ------
            batch: `Tuple`
                token_ids: `torch.tensor(bs, seq_length)` - The token ids for each of the sequence. It is padded.
                lengths: `torch.tensor(bs)` - The lengths of each of the sequences in the batch.

        Output:
        -------
            token_ids: `torch.tensor(bs, seq_length)` - The token ids after the modifications for MLM.
            attn_mask: `torch.tensor(bs, seq_length)` - The attention mask for the self-attention.
            clm_labels: `torch.tensor(bs, seq_length)` - The causal language modeling labels. There is a -100 where there is nothing to predict.
        """
        token_ids, lengths = batch
        token_ids, lengths = self.round_batch(x=token_ids, lengths=lengths)
        assert token_ids.size(0) == lengths.size(0)

        attn_mask = torch.arange(token_ids.size(1), dtype=torch.long, device=lengths.device) < lengths[:, None]
        clm_labels = token_ids.new(token_ids.size()).copy_(token_ids)
        clm_labels[~attn_mask] = -100  # previously `clm_labels[1-attn_mask] = -1`, cf pytorch 1.2.0 compatibility

        # sanity checks
        assert 0 <= token_ids.min() <= token_ids.max() < self.vocab_size

        return token_ids, attn_mask, clm_labels

    def round_batch(self, x: torch.tensor, lengths: torch.tensor):
        """
        For float16 only.
        Sub-sample sentences in a batch, and add padding, so that each dimension is a multiple of 8.

        Input:
        ------
            x: `torch.tensor(bs, seq_length)` - The token ids.
            lengths: `torch.tensor(bs, seq_length)` - The lengths of each of the sequence in the batch.

        Output:
        -------
            x:  `torch.tensor(new_bs, new_seq_length)` - The updated token ids.
            lengths: `torch.tensor(new_bs, new_seq_length)` - The updated lengths.
        """
        if not self.fp16 or len(lengths) < 8:
            return x, lengths

        # number of sentences == 0 [8]
        bs1 = len(lengths)
        bs2 = 8 * (bs1 // 8)
        assert bs2 > 0 and bs2 % 8 == 0
        if bs1 != bs2:
            idx = torch.randperm(bs1)[:bs2]
            lengths = lengths[idx]
            slen = lengths.max().item()
            x = x[idx, :slen]
        else:
            idx = None

        # sequence length == 0 [8]
        ml1 = x.size(1)
        if ml1 % 8 != 0:
            pad = 8 - (ml1 % 8)
            ml2 = ml1 + pad
            if self.mlm:
                pad_id = self.params.special_tok_ids["pad_token"]
            else:
                pad_id = self.params.special_tok_ids["unk_token"]
            padding_tensor = torch.zeros(bs2, pad, dtype=torch.long, device=x.device).fill_(pad_id)
            x = torch.cat([x, padding_tensor], 1)
            assert x.size() == (bs2, ml2)

        assert x.size(0) % 8 == 0
        assert x.size(1) % 8 == 0
        return x, lengths

    def train(self):
        """
        The real training loop.
        """
        if self.is_master:
            logger.info("Starting training")
        self.last_log = time.time()
        self.student.train()
        self.teacher.eval()

        for _ in range(self.params.n_epoch):
            if self.is_master:
                logger.info(f"--- Starting epoch {self.epoch}/{self.params.n_epoch-1}")
            if self.multi_gpu:
                torch.distributed.barrier()

            iter_bar = tqdm(self.dataloader, desc="-Iter", disable=self.params.local_rank not in [-1, 0])
            for batch in iter_bar:
                if self.params.n_gpu > 0:
                    batch = tuple(t.to(f"cuda:{self.params.local_rank}") for t in batch)

                if self.mlm:
                    token_ids, attn_mask, lm_labels = self.prepare_batch_mlm(batch=batch)
                else:
                    token_ids, attn_mask, lm_labels = self.prepare_batch_clm(batch=batch)
                self.step(input_ids=token_ids, attention_mask=attn_mask, lm_labels=lm_labels)

                iter_bar.update()
                iter_bar.set_postfix(
                    {"Last_loss": f"{self.last_loss:.2f}", "Avg_cum_loss": f"{self.total_loss_epoch/self.n_iter:.2f}"}
                )
            iter_bar.close()

            if self.is_master:
                logger.info(f"--- Ending epoch {self.epoch}/{self.params.n_epoch-1}")
            self.end_epoch()

        if self.is_master:
            logger.info("Save very last checkpoint as `pytorch_model.bin`.")
            self.save_checkpoint(checkpoint_name="pytorch_model.bin")
            logger.info("Training is finished")

    def step(self, input_ids: torch.tensor, attention_mask: torch.tensor, lm_labels: torch.tensor):
        """
        One optimization step: forward of student AND teacher, backward on the loss (for gradient accumulation),
        and possibly a parameter update (depending on the gradient accumulation).

        Input:
        ------
        input_ids: `torch.tensor(bs, seq_length)` - The token ids.
        attention_mask: `torch.tensor(bs, seq_length)` - The attention mask for self attention.
        lm_labels: `torch.tensor(bs, seq_length)` - The language modeling labels (mlm labels for MLM and clm labels for CLM).
        """
        if self.mlm:
            student_outputs = self.student(
                input_ids=input_ids, attention_mask=attention_mask
            )  # (bs, seq_length, voc_size)
            with torch.no_grad():
                teacher_outputs = self.teacher(
                    input_ids=input_ids, attention_mask=attention_mask
                )  # (bs, seq_length, voc_size)
        else:
            student_outputs = self.student(input_ids=input_ids, attention_mask=None)  # (bs, seq_length, voc_size)
            with torch.no_grad():
                teacher_outputs = self.teacher(input_ids=input_ids, attention_mask=None)  # (bs, seq_length, voc_size)
        s_logits, s_hidden_states = student_outputs["logits"], student_outputs["hidden_states"]
        t_logits, t_hidden_states = teacher_outputs["logits"], teacher_outputs["hidden_states"]
        assert s_logits.size() == t_logits.size()

        # https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100
        # https://github.com/peterliht/knowledge-distillation-pytorch/issues/2
        if self.params.restrict_ce_to_mask:
            mask = (lm_labels > -1).unsqueeze(-1).expand_as(s_logits)  # (bs, seq_length, voc_size)
        else:
            mask = attention_mask.unsqueeze(-1).expand_as(s_logits)  # (bs, seq_length, voc_size)
        s_logits_slct = torch.masked_select(s_logits, mask)  # (bs * seq_length * voc_size) modulo the 1s in mask
        s_logits_slct = s_logits_slct.view(-1, s_logits.size(-1))  # (bs * seq_length, voc_size) modulo the 1s in mask
        t_logits_slct = torch.masked_select(t_logits, mask)  # (bs * seq_length * voc_size) modulo the 1s in mask
        t_logits_slct = t_logits_slct.view(-1, s_logits.size(-1))  # (bs * seq_length, voc_size) modulo the 1s in mask
        assert t_logits_slct.size() == s_logits_slct.size()

        loss_ce = (
            self.ce_loss_fct(
                nn.functional.log_softmax(s_logits_slct / self.temperature, dim=-1),
                nn.functional.softmax(t_logits_slct / self.temperature, dim=-1),
            )
            * (self.temperature) ** 2
        )
        loss = self.alpha_ce * loss_ce

        if self.alpha_mlm > 0.0:
            loss_mlm = self.lm_loss_fct(s_logits.view(-1, s_logits.size(-1)), lm_labels.view(-1))
            loss += self.alpha_mlm * loss_mlm
        if self.alpha_clm > 0.0:
            shift_logits = s_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
            loss_clm = self.lm_loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
            loss += self.alpha_clm * loss_clm

        if self.alpha_mse > 0.0:
            loss_mse = self.mse_loss_fct(s_logits_slct, t_logits_slct) / s_logits_slct.size(
                0
            )  # Reproducing batchmean reduction
            loss += self.alpha_mse * loss_mse
        if self.alpha_cos > 0.0:
            s_hidden_states = s_hidden_states[-1]  # (bs, seq_length, dim)
            t_hidden_states = t_hidden_states[-1]  # (bs, seq_length, dim)
            mask = attention_mask.unsqueeze(-1).expand_as(s_hidden_states)  # (bs, seq_length, dim)
            assert s_hidden_states.size() == t_hidden_states.size()
            dim = s_hidden_states.size(-1)

            s_hidden_states_slct = torch.masked_select(s_hidden_states, mask)  # (bs * seq_length * dim)
            s_hidden_states_slct = s_hidden_states_slct.view(-1, dim)  # (bs * seq_length, dim)
            t_hidden_states_slct = torch.masked_select(t_hidden_states, mask)  # (bs * seq_length * dim)
            t_hidden_states_slct = t_hidden_states_slct.view(-1, dim)  # (bs * seq_length, dim)

            target = s_hidden_states_slct.new(s_hidden_states_slct.size(0)).fill_(1)  # (bs * seq_length,)
            loss_cos = self.cosine_loss_fct(s_hidden_states_slct, t_hidden_states_slct, target)
            loss += self.alpha_cos * loss_cos

        self.total_loss_epoch += loss.item()
        self.last_loss = loss.item()
        self.last_loss_ce = loss_ce.item()
        if self.alpha_mlm > 0.0:
            self.last_loss_mlm = loss_mlm.item()
        if self.alpha_clm > 0.0:
            self.last_loss_clm = loss_clm.item()
        if self.alpha_mse > 0.0:
            self.last_loss_mse = loss_mse.item()
        if self.alpha_cos > 0.0:
            self.last_loss_cos = loss_cos.item()

        self.optimize(loss)

        self.n_sequences_epoch += input_ids.size(0)

    def optimize(self, loss):
        """
        Normalization on the loss (gradient accumulation or distributed training), followed by
        backward pass on the loss, possibly followed by a parameter update (depending on the gradient accumulation).
        Also update the metrics for tensorboard.
        """
        # Check for NaN
        if (loss != loss).data.any():
            logger.error("NaN detected")
            exit()

        if self.multi_gpu:
            loss = loss.mean()
        if self.params.gradient_accumulation_steps > 1:
            loss = loss / self.params.gradient_accumulation_steps

        if self.fp16:
            from apex import amp

            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()

        self.iter()
        if self.n_iter % self.params.gradient_accumulation_steps == 0:
            if self.fp16:
                nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.params.max_grad_norm)
            else:
                nn.utils.clip_grad_norm_(self.student.parameters(), self.params.max_grad_norm)
            self.optimizer.step()
            self.optimizer.zero_grad()
            self.scheduler.step()

    def iter(self):
        """
        Update global counts, write to tensorboard and save checkpoint.
        """
        self.n_iter += 1
        self.n_total_iter += 1

        if self.n_total_iter % self.params.log_interval == 0:
            self.log_tensorboard()
            self.last_log = time.time()
        if self.n_total_iter % self.params.checkpoint_interval == 0:
            self.save_checkpoint()

    def log_tensorboard(self):
        """
        Log into tensorboard. Only by the master process.
        """
        if not self.is_master:
            return

        for param_name, param in self.student.named_parameters():
            self.tensorboard.add_scalar(
                tag="parameter_mean/" + param_name, scalar_value=param.data.mean(), global_step=self.n_total_iter
            )
            self.tensorboard.add_scalar(
                tag="parameter_std/" + param_name, scalar_value=param.data.std(), global_step=self.n_total_iter
            )
            if param.grad is None:
                continue
            self.tensorboard.add_scalar(
                tag="grad_mean/" + param_name, scalar_value=param.grad.data.mean(), global_step=self.n_total_iter
            )
            self.tensorboard.add_scalar(
                tag="grad_std/" + param_name, scalar_value=param.grad.data.std(), global_step=self.n_total_iter
            )

        self.tensorboard.add_scalar(
            tag="losses/cum_avg_loss_epoch",
            scalar_value=self.total_loss_epoch / self.n_iter,
            global_step=self.n_total_iter,
        )
        self.tensorboard.add_scalar(tag="losses/loss", scalar_value=self.last_loss, global_step=self.n_total_iter)
        self.tensorboard.add_scalar(
            tag="losses/loss_ce", scalar_value=self.last_loss_ce, global_step=self.n_total_iter
        )
        if self.alpha_mlm > 0.0:
            self.tensorboard.add_scalar(
                tag="losses/loss_mlm", scalar_value=self.last_loss_mlm, global_step=self.n_total_iter
            )
        if self.alpha_clm > 0.0:
            self.tensorboard.add_scalar(
                tag="losses/loss_clm", scalar_value=self.last_loss_clm, global_step=self.n_total_iter
            )
        if self.alpha_mse > 0.0:
            self.tensorboard.add_scalar(
                tag="losses/loss_mse", scalar_value=self.last_loss_mse, global_step=self.n_total_iter
            )
        if self.alpha_cos > 0.0:
            self.tensorboard.add_scalar(
                tag="losses/loss_cos", scalar_value=self.last_loss_cos, global_step=self.n_total_iter
            )
        self.tensorboard.add_scalar(
            tag="learning_rate/lr", scalar_value=self.scheduler.get_lr()[0], global_step=self.n_total_iter
        )

        self.tensorboard.add_scalar(
            tag="global/memory_usage",
            scalar_value=psutil.virtual_memory()._asdict()["used"] / 1_000_000,
            global_step=self.n_total_iter,
        )
        self.tensorboard.add_scalar(
            tag="global/speed", scalar_value=time.time() - self.last_log, global_step=self.n_total_iter
        )

    def end_epoch(self):
        """
        Finally arrived at the end of epoch (full pass on dataset).
        Do some tensorboard logging and checkpoint saving.
        """
        logger.info(f"{self.n_sequences_epoch} sequences have been trained during this epoch.")

        if self.is_master:
            self.save_checkpoint(checkpoint_name=f"model_epoch_{self.epoch}.pth")
            self.tensorboard.add_scalar(
                tag="epoch/loss", scalar_value=self.total_loss_epoch / self.n_iter, global_step=self.epoch
            )

        self.epoch += 1
        self.n_sequences_epoch = 0
        self.n_iter = 0
        self.total_loss_epoch = 0

    def save_checkpoint(self, checkpoint_name: str = "checkpoint.pth"):
        """
        Save the current state. Only by the master process.
        """
        if not self.is_master:
            return
        mdl_to_save = self.student.module if hasattr(self.student, "module") else self.student
        mdl_to_save.config.save_pretrained(self.dump_path)
        state_dict = mdl_to_save.state_dict()
        torch.save(state_dict, os.path.join(self.dump_path, checkpoint_name))