File size: 18,594 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
#!/usr/bin/env python3
# Copyright 2018 CMU and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Bertology: this script shows how you can explore the internals of the models in the library to:
    - compute the entropy of the head attentions
    - compute the importance of each head
    - prune (remove) the low importance head.
    Some parts of this script are adapted from the code of Michel et al. (http://arxiv.org/abs/1905.10650)
    which is available at https://github.com/pmichel31415/are-16-heads-really-better-than-1
"""
import argparse
import logging
import os
from datetime import datetime

import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, SequentialSampler, Subset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm

import transformers
from transformers import (
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
    GlueDataset,
    default_data_collator,
    glue_compute_metrics,
    glue_output_modes,
    glue_processors,
    set_seed,
)
from transformers.trainer_utils import is_main_process


logger = logging.getLogger(__name__)


def entropy(p):
    """Compute the entropy of a probability distribution"""
    plogp = p * torch.log(p)
    plogp[p == 0] = 0
    return -plogp.sum(dim=-1)


def print_2d_tensor(tensor):
    """Print a 2D tensor"""
    logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor))))
    for row in range(len(tensor)):
        if tensor.dtype != torch.long:
            logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data))
        else:
            logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data))


def compute_heads_importance(
    args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None, actually_pruned=False
):
    """This method shows how to compute:
    - head attention entropy
    - head importance scores according to http://arxiv.org/abs/1905.10650
    """
    # Prepare our tensors
    n_layers, n_heads = model.config.num_hidden_layers, model.config.num_attention_heads
    head_importance = torch.zeros(n_layers, n_heads).to(args.device)
    attn_entropy = torch.zeros(n_layers, n_heads).to(args.device)

    if head_mask is None:
        head_mask = torch.ones(n_layers, n_heads).to(args.device)

    head_mask.requires_grad_(requires_grad=True)
    # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
    if actually_pruned:
        head_mask = None

    preds = None
    labels = None
    tot_tokens = 0.0

    for step, inputs in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
        for k, v in inputs.items():
            inputs[k] = v.to(args.device)

        # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
        outputs = model(**inputs, head_mask=head_mask)
        loss, logits, all_attentions = (
            outputs[0],
            outputs[1],
            outputs[-1],
        )  # Loss and logits are the first, attention the last
        loss.backward()  # Backpropagate to populate the gradients in the head mask

        if compute_entropy:
            for layer, attn in enumerate(all_attentions):
                masked_entropy = entropy(attn.detach()) * inputs["attention_mask"].float().unsqueeze(1)
                attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach()

        if compute_importance:
            head_importance += head_mask.grad.abs().detach()

        # Also store our logits/labels if we want to compute metrics afterwards
        if preds is None:
            preds = logits.detach().cpu().numpy()
            labels = inputs["labels"].detach().cpu().numpy()
        else:
            preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
            labels = np.append(labels, inputs["labels"].detach().cpu().numpy(), axis=0)

        tot_tokens += inputs["attention_mask"].float().detach().sum().data

    # Normalize
    attn_entropy /= tot_tokens
    head_importance /= tot_tokens
    # Layerwise importance normalization
    if not args.dont_normalize_importance_by_layer:
        exponent = 2
        norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1 / exponent)
        head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20

    if not args.dont_normalize_global_importance:
        head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())

    # Print/save matrices
    np.save(os.path.join(args.output_dir, "attn_entropy.npy"), attn_entropy.detach().cpu().numpy())
    np.save(os.path.join(args.output_dir, "head_importance.npy"), head_importance.detach().cpu().numpy())

    logger.info("Attention entropies")
    print_2d_tensor(attn_entropy)
    logger.info("Head importance scores")
    print_2d_tensor(head_importance)
    logger.info("Head ranked by importance scores")
    head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device)
    head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange(
        head_importance.numel(), device=args.device
    )
    head_ranks = head_ranks.view_as(head_importance)
    print_2d_tensor(head_ranks)

    return attn_entropy, head_importance, preds, labels


def mask_heads(args, model, eval_dataloader):
    """This method shows how to mask head (set some heads to zero), to test the effect on the network,
    based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650)
    """
    _, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False)
    preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
    original_score = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name]
    logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold)

    new_head_mask = torch.ones_like(head_importance)
    num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount))

    current_score = original_score
    while current_score >= original_score * args.masking_threshold:
        head_mask = new_head_mask.clone()  # save current head mask
        # heads from least important to most - keep only not-masked heads
        head_importance[head_mask == 0.0] = float("Inf")
        current_heads_to_mask = head_importance.view(-1).sort()[1]

        if len(current_heads_to_mask) <= num_to_mask:
            break

        # mask heads
        current_heads_to_mask = current_heads_to_mask[:num_to_mask]
        logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist()))
        new_head_mask = new_head_mask.view(-1)
        new_head_mask[current_heads_to_mask] = 0.0
        new_head_mask = new_head_mask.view_as(head_mask)
        new_head_mask = new_head_mask.clone().detach()
        print_2d_tensor(new_head_mask)

        # Compute metric and head importance again
        _, head_importance, preds, labels = compute_heads_importance(
            args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask
        )
        preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
        current_score = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name]
        logger.info(
            "Masking: current score: %f, remaining heads %d (%.1f percents)",
            current_score,
            new_head_mask.sum(),
            new_head_mask.sum() / new_head_mask.numel() * 100,
        )

    logger.info("Final head mask")
    print_2d_tensor(head_mask)
    np.save(os.path.join(args.output_dir, "head_mask.npy"), head_mask.detach().cpu().numpy())

    return head_mask


def prune_heads(args, model, eval_dataloader, head_mask):
    """This method shows how to prune head (remove heads weights) based on
    the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650)
    """
    # Try pruning and test time speedup
    # Pruning is like masking but we actually remove the masked weights
    before_time = datetime.now()
    _, _, preds, labels = compute_heads_importance(
        args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=head_mask
    )
    preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
    score_masking = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name]
    original_time = datetime.now() - before_time

    original_num_params = sum(p.numel() for p in model.parameters())
    heads_to_prune = {
        layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(head_mask))
    }

    assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item()
    model.prune_heads(heads_to_prune)
    pruned_num_params = sum(p.numel() for p in model.parameters())

    before_time = datetime.now()
    _, _, preds, labels = compute_heads_importance(
        args,
        model,
        eval_dataloader,
        compute_entropy=False,
        compute_importance=False,
        head_mask=None,
        actually_pruned=True,
    )
    preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
    score_pruning = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name]
    new_time = datetime.now() - before_time

    logger.info(
        "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)",
        original_num_params,
        pruned_num_params,
        pruned_num_params / original_num_params * 100,
    )
    logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning)
    logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time / new_time * 100)


def main():
    parser = argparse.ArgumentParser()
    # Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models",
    )
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " + ", ".join(glue_processors.keys()),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )

    # Other parameters
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name_or_path",
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name_or_path",
    )
    parser.add_argument(
        "--cache_dir",
        default=None,
        type=str,
        help="Where do you want to store the pre-trained models downloaded from huggingface.co",
    )
    parser.add_argument(
        "--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances."
    )
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Whether to overwrite data in output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )

    parser.add_argument(
        "--dont_normalize_importance_by_layer", action="store_true", help="Don't normalize importance score by layers"
    )
    parser.add_argument(
        "--dont_normalize_global_importance",
        action="store_true",
        help="Don't normalize all importance scores between 0 and 1",
    )

    parser.add_argument(
        "--try_masking", action="store_true", help="Whether to try to mask head until a threshold of accuracy."
    )
    parser.add_argument(
        "--masking_threshold",
        default=0.9,
        type=float,
        help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).",
    )
    parser.add_argument(
        "--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step."
    )
    parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.")

    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=(
            "The maximum total input sequence length after WordPiece tokenization. \n"
            "Sequences longer than this will be truncated, sequences shorter padded."
        ),
    )
    parser.add_argument("--batch_size", default=1, type=int, help="Batch size.")

    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd

        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup devices and distributed training
    if args.local_rank == -1 or args.no_cuda:
        args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        args.device = torch.device("cuda", args.local_rank)
        args.n_gpu = 1
        torch.distributed.init_process_group(backend="nccl")  # Initializes the distributed backend

    # Setup logging
    logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1)))
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()

    # Set seeds
    set_seed(args.seed)

    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in glue_processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = glue_processors[args.task_name]()
    args.output_mode = glue_output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = AutoConfig.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        output_attentions=True,
        cache_dir=args.cache_dir,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        cache_dir=args.cache_dir,
    )
    model = AutoModelForSequenceClassification.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir,
    )

    # Distributed and parallel training
    model.to(args.device)
    if args.local_rank != -1:
        model = nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
    elif args.n_gpu > 1:
        model = nn.DataParallel(model)

    # Print/save training arguments
    os.makedirs(args.output_dir, exist_ok=True)
    torch.save(args, os.path.join(args.output_dir, "run_args.bin"))
    logger.info("Training/evaluation parameters %s", args)

    # Prepare dataset for the GLUE task
    eval_dataset = GlueDataset(args, tokenizer=tokenizer, mode="dev")
    if args.data_subset > 0:
        eval_dataset = Subset(eval_dataset, list(range(min(args.data_subset, len(eval_dataset)))))
    eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
    eval_dataloader = DataLoader(
        eval_dataset, sampler=eval_sampler, batch_size=args.batch_size, collate_fn=default_data_collator
    )

    # Compute head entropy and importance score
    compute_heads_importance(args, model, eval_dataloader)

    # Try head masking (set heads to zero until the score goes under a threshole)
    # and head pruning (remove masked heads and see the effect on the network)
    if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
        head_mask = mask_heads(args, model, eval_dataloader)
        prune_heads(args, model, eval_dataloader, head_mask)


if __name__ == "__main__":
    main()