File size: 19,607 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
<!---
Copyright 2021 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->

# Language model training examples

The following example showcases how to train a language model from scratch 
using the JAX/Flax backend.

JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU.
Models written in JAX/Flax are **immutable** and updated in a purely functional
way which enables simple and efficient model parallelism.

## Masked language modeling

In the following, we demonstrate how to train a bi-directional transformer model 
using masked language modeling objective as introduced in [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805).
More specifically, we demonstrate how JAX/Flax can be leveraged 
to pre-train [**`roberta-base`**](https://huggingface.co/roberta-base)
in Norwegian on a single TPUv3-8 pod.

The example script uses the πŸ€— Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.

To setup all relevant files for training, let's create a directory.

```bash
mkdir ./norwegian-roberta-base
```

### Train tokenizer

In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**.
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 10 minutes depending on your hardware β˜•.

```python
from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer

# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")

# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()

def batch_iterator(batch_size=1000):
    for i in range(0, len(dataset), batch_size):
        yield dataset[i: i + batch_size]["text"]

# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
    "<s>",
    "<pad>",
    "</s>",
    "<unk>",
    "<mask>",
])

# Save files to disk
tokenizer.save("./norwegian-roberta-base/tokenizer.json")
```

### Create configuration

Next, we create the model's configuration file. This is as simple 
as loading and storing [`**roberta-base**`](https://huggingface.co/roberta-base)
in the local model folder:

```python
from transformers import RobertaConfig

config = RobertaConfig.from_pretrained("roberta-base", vocab_size=50265)
config.save_pretrained("./norwegian-roberta-base")
```

Great, we have set up our model repository. During training, we will automatically
push the training logs and model weights to the repo.

### Train model

Next we can run the example script to pretrain the model:

```bash
python run_mlm_flax.py \
    --output_dir="./norwegian-roberta-base" \
    --model_type="roberta" \
    --config_name="./norwegian-roberta-base" \
    --tokenizer_name="./norwegian-roberta-base" \
    --dataset_name="oscar" \
    --dataset_config_name="unshuffled_deduplicated_no" \
    --max_seq_length="128" \
    --weight_decay="0.01" \
    --per_device_train_batch_size="128" \
    --per_device_eval_batch_size="128" \
    --learning_rate="3e-4" \
    --warmup_steps="1000" \
    --overwrite_output_dir \
    --num_train_epochs="18" \
    --adam_beta1="0.9" \
    --adam_beta2="0.98" \
    --logging_steps="500" \
    --save_steps="2500" \
    --eval_steps="2500" \
    --push_to_hub
```

Training should converge at a loss and accuracy 
of 1.78 and 0.64 respectively after 18 epochs on a single TPUv3-8.
This should take less than 18 hours.
Training statistics can be accessed on [tfhub.dev](https://tensorboard.dev/experiment/GdYmdak2TWeVz0DDRYOrrg).

For a step-by-step walkthrough of how to do masked language modeling in Flax, please have a 
look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb) google colab.

## Causal language modeling

In the following, we demonstrate how to train an auto-regressive causal transformer model 
in JAX/Flax.
More specifically, we pretrain a randomly initialized [**`gpt2`**](https://huggingface.co/gpt2) model in Norwegian on a single TPUv3-8.
to pre-train 124M [**`gpt2`**](https://huggingface.co/gpt2)
in Norwegian on a single TPUv3-8 pod.

The example script uses the πŸ€— Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.


To setup all relevant files for training, let's create a directory.

```bash
mkdir ./norwegian-gpt2
```

### Train tokenizer

In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**.
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 10 minutes depending on your hardware β˜•.

```python
from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer

# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")

# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()

def batch_iterator(batch_size=1000):
    for i in range(0, len(dataset), batch_size):
        yield dataset[i: i + batch_size]["text"]

# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50257, min_frequency=2, special_tokens=[
    "<s>",
    "<pad>",
    "</s>",
    "<unk>",
    "<mask>",
])

# Save files to disk
tokenizer.save("./norwegian-gpt2/tokenizer.json")
```

### Create configuration

Next, we create the model's configuration file. This is as simple 
as loading and storing [`**gpt2**`](https://huggingface.co/gpt2)
in the local model folder:

```python
from transformers import GPT2Config

config = GPT2Config.from_pretrained("gpt2", resid_pdrop=0.0, embd_pdrop=0.0, attn_pdrop=0.0, vocab_size=50257)
config.save_pretrained("./norwegian-gpt2")
```

Great, we have set up our model repository. During training, we will now automatically
push the training logs and model weights to the repo.

### Train model

Finally, we can run the example script to pretrain the model:

```bash
python run_clm_flax.py \
    --output_dir="./norwegian-gpt2" \
    --model_type="gpt2" \
    --config_name="./norwegian-gpt2" \
    --tokenizer_name="./norwegian-gpt2" \
    --dataset_name="oscar" \
    --dataset_config_name="unshuffled_deduplicated_no" \
    --do_train --do_eval \
    --block_size="512" \
    --per_device_train_batch_size="64" \
    --per_device_eval_batch_size="64" \
    --learning_rate="5e-3" --warmup_steps="1000" \
    --adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" \
    --overwrite_output_dir \
    --num_train_epochs="20" \
    --logging_steps="500" \
    --save_steps="2500" \
    --eval_steps="2500" \
    --push_to_hub
```

Training should converge at a loss and perplexity 
of 3.24 and 25.72 respectively after 20 epochs on a single TPUv3-8.
This should take less than ~21 hours.
Training statistics can be accessed on [tfhub.de](https://tensorboard.dev/experiment/2zEhLwJ0Qp2FAkI3WVH9qA).

For a step-by-step walkthrough of how to do causal language modeling in Flax, please have a 
look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb) google colab.

## T5-like span-masked language modeling

In the following, we demonstrate how to train a T5 model using the span-masked language model 
objective as proposed in the [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683).
More specifically, we demonstrate how JAX/Flax can be leveraged 
to pre-train [**`google/t5-v1_1-base`**](https://huggingface.co/google/t5-v1_1-base)
in Norwegian on a single TPUv3-8 pod.

The example script uses the πŸ€— Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.

Let's start by creating a model repository to save the trained model and logs.
Here we call the model `"norwegian-t5-base"`, but you can change the model name as you like.

To setup all relevant files for training, let's create a directory.

```bash
cd ./norwegian-t5-base
```

### Train tokenizer

In the first step, we train a tokenizer to efficiently process the text input for the model. 
We make use of the [tokenizers](https://github.com/huggingface/tokenizers) library to train 
a sentencepiece unigram tokenizer as shown in [t5_tokenizer_model.py](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling/t5_tokenizer_model.py) 
which is heavily inspired from [yandex-research/DeDLOC's tokenizer model](https://github.com/yandex-research/DeDLOC/blob/5c994bc64e573702a9a79add3ecd68b38f14b548/sahajbert/tokenizer/tokenizer_model.py) .

The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 120 minutes depending on your hardware β˜•β˜•β˜• .

```python
import datasets

from t5_tokenizer_model import SentencePieceUnigramTokenizer


vocab_size = 32_000
input_sentence_size = None

# Initialize a dataset
dataset = datasets.load_dataset("oscar", name="unshuffled_deduplicated_no", split="train")

tokenizer = SentencePieceUnigramTokenizer(unk_token="<unk>", eos_token="</s>", pad_token="<pad>")


# Build an iterator over this dataset
def batch_iterator(input_sentence_size=None):
    if input_sentence_size is None:
        input_sentence_size = len(dataset)
    batch_length = 100
    for i in range(0, input_sentence_size, batch_length):
        yield dataset[i: i + batch_length]["text"]


# Train tokenizer
tokenizer.train_from_iterator(
    iterator=batch_iterator(input_sentence_size=input_sentence_size),
    vocab_size=vocab_size,
    show_progress=True,
)

# Save files to disk
tokenizer.save("./norwegian-t5-base/tokenizer.json")
```

### Create configuration

Next, we create the model's configuration file. This is as simple 
as loading and storing [`**google/t5-v1_1-base**`](https://huggingface.co/google/t5-v1_1-base)
in the local model folder:

```python
from transformers import T5Config

config = T5Config.from_pretrained("google/t5-v1_1-base", vocab_size=tokenizer.get_vocab_size())
config.save_pretrained("./norwegian-t5-base")
```

Great, we have set up our model repository. During training, we will automatically
push the training logs and model weights to the repo.

### Train model

Next we can run the example script to pretrain the model:

```bash
python run_t5_mlm_flax.py \
	--output_dir="./norwegian-t5-base" \
	--model_type="t5" \
	--config_name="./norwegian-t5-base" \
	--tokenizer_name="./norwegian-t5-base" \
	--dataset_name="oscar" \
	--dataset_config_name="unshuffled_deduplicated_no" \
	--max_seq_length="512" \
	--per_device_train_batch_size="32" \
	--per_device_eval_batch_size="32" \
	--adafactor \
	--learning_rate="0.005" \
	--weight_decay="0.001" \
	--warmup_steps="2000" \
	--overwrite_output_dir \
	--logging_steps="500" \
	--save_steps="10000" \
	--eval_steps="2500" \
	--push_to_hub
```

Training should converge at a loss and accuracy 
of 2.36 and 57.0 respectively after 3 epochs on a single TPUv3-8.
This should take around 4.5 hours.
Training statistics can be accessed on directly on the πŸ€— [hub](https://huggingface.co/patrickvonplaten/t5-base-norwegian/tensorboard)

## BART: Denoising language modeling

In the following, we demonstrate how to train a BART model 
using denoising language modeling objective as introduced in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461).
More specifically, we demonstrate how JAX/Flax can be leveraged 
to pre-train [**`bart-base`**](https://huggingface.co/facebook/bart-base)
in Norwegian on a single TPUv3-8 pod.

The example script uses the πŸ€— Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.

To setup all relevant files for training, let's create a directory.

```bash
mkdir ./norwegian-bart-base
```

### Train tokenizer
In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**.
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 10 minutes depending on your hardware β˜•.

```python
from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer

# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")

# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()

def batch_iterator(batch_size=1000):
    for i in range(0, len(dataset), batch_size):
        yield dataset[i: i + batch_size]["text"]

# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
    "<s>",
    "<pad>",
    "</s>",
    "<unk>",
    "<mask>",
])

# Save files to disk
tokenizer.save("./norwegian-bart-base/tokenizer.json")
```

### Create configuration

Next, we create the model's configuration file. This is as simple 
as loading and storing [`**facebook/bart-base**`](https://huggingface.co/facebook/bart-base)
in the local model folder:

```python
from transformers import BartConfig
config = BartConfig.from_pretrained("facebook/bart-base", vocab_size=50265)
config.save_pretrained("./norwegian-bart-base")
```

Great, we have set up our model repository. During training, we will automatically
push the training logs and model weights to the repo.

### Train model

Next we can run the example script to pretrain the model:

```bash
python run_bart_dlm_flax.py \
    --output_dir="./norwegian-bart-base" \
    --config_name="./norwegian-bart-base" \
    --tokenizer_name="./norwegian-bart-base" \
    --dataset_name="oscar" \
    --dataset_config_name="unshuffled_deduplicated_no" \
    --max_seq_length="1024" \
    --per_device_train_batch_size="32" \
    --per_device_eval_batch_size="32" \
    --learning_rate="1e-4" \
    --warmup_steps="2000" \
    --overwrite_output_dir \
    --logging_steps="500" \
    --save_steps="2000" \
    --eval_steps="2000" \
    --push_to_hub
```

Training should converge at a loss and accuracy 
of 1.36 and 0.77 respectively after 3 epochs on a single TPUv3-8.
This should take less than 6 hours.
Training statistics can be accessed on [tfhub.dev](https://tensorboard.dev/experiment/Maw62QlaSXWS0MOf2V2lbg/).

## Runtime evaluation

We also ran masked language modeling using PyTorch/XLA on a TPUv3-8, and PyTorch on 8 V100 GPUs. We report the
overall training time below.
For reproducibility, we state the training commands used for PyTorch/XLA and PyTorch further below.

| Task  | [TPU v3-8 (Flax)](https://tensorboard.dev/experiment/GdYmdak2TWeVz0DDRYOrrg/)  | [TPU v3-8 (Pytorch/XLA)](https://tensorboard.dev/experiment/7Jq1kcQQRAmy12KOdXek7A/)| [8 GPU (PyTorch)](https://tensorboard.dev/experiment/PJneV8FQRxa2unPw1QnVHA)  |
|-------|-----------|------------|------------|
| MLM   |  15h32m   |  23h46m    | 44h14m     |

*All experiments are ran on Google Cloud Platform. 
GPU experiments are ran without further optimizations besides JAX
transformations. GPU experiments are ran with full precision (fp32). "TPU v3-8"
are 8 TPU cores on 4 chips (each chips has 2 cores), while "8 GPU" are 8 GPU chips.

### Script to run MLM with PyTorch/XLA on TPUv3-8

For comparison one can run the same pre-training with PyTorch/XLA on TPU. To set up PyTorch/XLA on Cloud TPU VMs, please 
refer to [this](https://cloud.google.com/tpu/docs/pytorch-xla-ug-tpu-vm) guide.
Having created the tokenzier and configuration in `norwegian-roberta-base`, we create the following symbolic links:

```bash
ln -s ~/transformers/examples/pytorch/language-modeling/run_mlm.py ./
ln -s ~/transformers/examples/pytorch/xla_spawn.py ./
```

, set the following environment variables:

```bash
export XRT_TPU_CONFIG="localservice;0;localhost:51011"
unset LD_PRELOAD

export NUM_TPUS=8
export TOKENIZERS_PARALLELISM=0
export MODEL_DIR="./norwegian-roberta-base"
mkdir -p ${MODEL_DIR}
```

, and start training as follows:

```bash
python3 xla_spawn.py --num_cores ${NUM_TPUS} run_mlm.py --output_dir="./runs" \
    --model_type="roberta" \
    --config_name="${MODEL_DIR}" \
    --tokenizer_name="${MODEL_DIR}" \
    --dataset_name="oscar" \
    --dataset_config_name="unshuffled_deduplicated_no" \
    --max_seq_length="128" \
    --weight_decay="0.01" \
    --per_device_train_batch_size="128" \
    --per_device_eval_batch_size="128" \
    --learning_rate="3e-4" \
    --warmup_steps="1000" \
    --overwrite_output_dir \
    --num_train_epochs="18" \
    --adam_beta1="0.9" \
    --adam_beta2="0.98" \
    --do_train \
    --do_eval \
    --logging_steps="500" \
    --evaluation_strategy="epoch" \
    --report_to="tensorboard" \
    --save_strategy="no"
```

### Script to compare pre-training with PyTorch on 8 GPU V100's

For comparison you can run the same pre-training with PyTorch on GPU. Note that we have to make use of `gradient_accumulation` 
because the maximum batch size that fits on a single V100 GPU is 32 instead of 128.
Having created the tokenzier and configuration in `norwegian-roberta-base`, we create the following symbolic links:

```bash
ln -s ~/transformers/examples/pytorch/language-modeling/run_mlm.py ./
```

, set some environment variables:

```bash
export NUM_GPUS=8
export TOKENIZERS_PARALLELISM=0
export MODEL_DIR="./norwegian-roberta-base"
mkdir -p ${MODEL_DIR}
```

, and can start training as follows:

```bash
python3 -m torch.distributed.launch --nproc_per_node ${NUM_GPUS} run_mlm.py \
    --output_dir="${MODEL_DIR}" \
    --model_type="roberta" \
    --config_name="${MODEL_DIR}" \
    --tokenizer_name="${MODEL_DIR}" \
    --dataset_name="oscar" \
    --dataset_config_name="unshuffled_deduplicated_no" \
    --max_seq_length="128" \
    --weight_decay="0.01" \
    --per_device_train_batch_size="32" \
    --per_device_eval_batch_size="32" \
    --gradient_accumulation="4" \
    --learning_rate="3e-4" \
    --warmup_steps="1000" \
    --overwrite_output_dir \
    --num_train_epochs="18" \
    --adam_beta1="0.9" \
    --adam_beta2="0.98" \
    --do_train \
    --do_eval \
    --logging_steps="500" \
    --evaluation_strategy="steps" \
    --report_to="tensorboard" \
    --save_strategy="no"
```