Spaces:
Paused
Paused
File size: 19,607 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
<!---
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Language model training examples
The following example showcases how to train a language model from scratch
using the JAX/Flax backend.
JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU.
Models written in JAX/Flax are **immutable** and updated in a purely functional
way which enables simple and efficient model parallelism.
## Masked language modeling
In the following, we demonstrate how to train a bi-directional transformer model
using masked language modeling objective as introduced in [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805).
More specifically, we demonstrate how JAX/Flax can be leveraged
to pre-train [**`roberta-base`**](https://huggingface.co/roberta-base)
in Norwegian on a single TPUv3-8 pod.
The example script uses the π€ Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.
To setup all relevant files for training, let's create a directory.
```bash
mkdir ./norwegian-roberta-base
```
### Train tokenizer
In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**.
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 10 minutes depending on your hardware β.
```python
from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
"<s>",
"<pad>",
"</s>",
"<unk>",
"<mask>",
])
# Save files to disk
tokenizer.save("./norwegian-roberta-base/tokenizer.json")
```
### Create configuration
Next, we create the model's configuration file. This is as simple
as loading and storing [`**roberta-base**`](https://huggingface.co/roberta-base)
in the local model folder:
```python
from transformers import RobertaConfig
config = RobertaConfig.from_pretrained("roberta-base", vocab_size=50265)
config.save_pretrained("./norwegian-roberta-base")
```
Great, we have set up our model repository. During training, we will automatically
push the training logs and model weights to the repo.
### Train model
Next we can run the example script to pretrain the model:
```bash
python run_mlm_flax.py \
--output_dir="./norwegian-roberta-base" \
--model_type="roberta" \
--config_name="./norwegian-roberta-base" \
--tokenizer_name="./norwegian-roberta-base" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="128" \
--weight_decay="0.01" \
--per_device_train_batch_size="128" \
--per_device_eval_batch_size="128" \
--learning_rate="3e-4" \
--warmup_steps="1000" \
--overwrite_output_dir \
--num_train_epochs="18" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--logging_steps="500" \
--save_steps="2500" \
--eval_steps="2500" \
--push_to_hub
```
Training should converge at a loss and accuracy
of 1.78 and 0.64 respectively after 18 epochs on a single TPUv3-8.
This should take less than 18 hours.
Training statistics can be accessed on [tfhub.dev](https://tensorboard.dev/experiment/GdYmdak2TWeVz0DDRYOrrg).
For a step-by-step walkthrough of how to do masked language modeling in Flax, please have a
look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb) google colab.
## Causal language modeling
In the following, we demonstrate how to train an auto-regressive causal transformer model
in JAX/Flax.
More specifically, we pretrain a randomly initialized [**`gpt2`**](https://huggingface.co/gpt2) model in Norwegian on a single TPUv3-8.
to pre-train 124M [**`gpt2`**](https://huggingface.co/gpt2)
in Norwegian on a single TPUv3-8 pod.
The example script uses the π€ Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.
To setup all relevant files for training, let's create a directory.
```bash
mkdir ./norwegian-gpt2
```
### Train tokenizer
In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**.
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 10 minutes depending on your hardware β.
```python
from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50257, min_frequency=2, special_tokens=[
"<s>",
"<pad>",
"</s>",
"<unk>",
"<mask>",
])
# Save files to disk
tokenizer.save("./norwegian-gpt2/tokenizer.json")
```
### Create configuration
Next, we create the model's configuration file. This is as simple
as loading and storing [`**gpt2**`](https://huggingface.co/gpt2)
in the local model folder:
```python
from transformers import GPT2Config
config = GPT2Config.from_pretrained("gpt2", resid_pdrop=0.0, embd_pdrop=0.0, attn_pdrop=0.0, vocab_size=50257)
config.save_pretrained("./norwegian-gpt2")
```
Great, we have set up our model repository. During training, we will now automatically
push the training logs and model weights to the repo.
### Train model
Finally, we can run the example script to pretrain the model:
```bash
python run_clm_flax.py \
--output_dir="./norwegian-gpt2" \
--model_type="gpt2" \
--config_name="./norwegian-gpt2" \
--tokenizer_name="./norwegian-gpt2" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--do_train --do_eval \
--block_size="512" \
--per_device_train_batch_size="64" \
--per_device_eval_batch_size="64" \
--learning_rate="5e-3" --warmup_steps="1000" \
--adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" \
--overwrite_output_dir \
--num_train_epochs="20" \
--logging_steps="500" \
--save_steps="2500" \
--eval_steps="2500" \
--push_to_hub
```
Training should converge at a loss and perplexity
of 3.24 and 25.72 respectively after 20 epochs on a single TPUv3-8.
This should take less than ~21 hours.
Training statistics can be accessed on [tfhub.de](https://tensorboard.dev/experiment/2zEhLwJ0Qp2FAkI3WVH9qA).
For a step-by-step walkthrough of how to do causal language modeling in Flax, please have a
look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb) google colab.
## T5-like span-masked language modeling
In the following, we demonstrate how to train a T5 model using the span-masked language model
objective as proposed in the [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683).
More specifically, we demonstrate how JAX/Flax can be leveraged
to pre-train [**`google/t5-v1_1-base`**](https://huggingface.co/google/t5-v1_1-base)
in Norwegian on a single TPUv3-8 pod.
The example script uses the π€ Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.
Let's start by creating a model repository to save the trained model and logs.
Here we call the model `"norwegian-t5-base"`, but you can change the model name as you like.
To setup all relevant files for training, let's create a directory.
```bash
cd ./norwegian-t5-base
```
### Train tokenizer
In the first step, we train a tokenizer to efficiently process the text input for the model.
We make use of the [tokenizers](https://github.com/huggingface/tokenizers) library to train
a sentencepiece unigram tokenizer as shown in [t5_tokenizer_model.py](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling/t5_tokenizer_model.py)
which is heavily inspired from [yandex-research/DeDLOC's tokenizer model](https://github.com/yandex-research/DeDLOC/blob/5c994bc64e573702a9a79add3ecd68b38f14b548/sahajbert/tokenizer/tokenizer_model.py) .
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 120 minutes depending on your hardware βββ .
```python
import datasets
from t5_tokenizer_model import SentencePieceUnigramTokenizer
vocab_size = 32_000
input_sentence_size = None
# Initialize a dataset
dataset = datasets.load_dataset("oscar", name="unshuffled_deduplicated_no", split="train")
tokenizer = SentencePieceUnigramTokenizer(unk_token="<unk>", eos_token="</s>", pad_token="<pad>")
# Build an iterator over this dataset
def batch_iterator(input_sentence_size=None):
if input_sentence_size is None:
input_sentence_size = len(dataset)
batch_length = 100
for i in range(0, input_sentence_size, batch_length):
yield dataset[i: i + batch_length]["text"]
# Train tokenizer
tokenizer.train_from_iterator(
iterator=batch_iterator(input_sentence_size=input_sentence_size),
vocab_size=vocab_size,
show_progress=True,
)
# Save files to disk
tokenizer.save("./norwegian-t5-base/tokenizer.json")
```
### Create configuration
Next, we create the model's configuration file. This is as simple
as loading and storing [`**google/t5-v1_1-base**`](https://huggingface.co/google/t5-v1_1-base)
in the local model folder:
```python
from transformers import T5Config
config = T5Config.from_pretrained("google/t5-v1_1-base", vocab_size=tokenizer.get_vocab_size())
config.save_pretrained("./norwegian-t5-base")
```
Great, we have set up our model repository. During training, we will automatically
push the training logs and model weights to the repo.
### Train model
Next we can run the example script to pretrain the model:
```bash
python run_t5_mlm_flax.py \
--output_dir="./norwegian-t5-base" \
--model_type="t5" \
--config_name="./norwegian-t5-base" \
--tokenizer_name="./norwegian-t5-base" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="512" \
--per_device_train_batch_size="32" \
--per_device_eval_batch_size="32" \
--adafactor \
--learning_rate="0.005" \
--weight_decay="0.001" \
--warmup_steps="2000" \
--overwrite_output_dir \
--logging_steps="500" \
--save_steps="10000" \
--eval_steps="2500" \
--push_to_hub
```
Training should converge at a loss and accuracy
of 2.36 and 57.0 respectively after 3 epochs on a single TPUv3-8.
This should take around 4.5 hours.
Training statistics can be accessed on directly on the π€ [hub](https://huggingface.co/patrickvonplaten/t5-base-norwegian/tensorboard)
## BART: Denoising language modeling
In the following, we demonstrate how to train a BART model
using denoising language modeling objective as introduced in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461).
More specifically, we demonstrate how JAX/Flax can be leveraged
to pre-train [**`bart-base`**](https://huggingface.co/facebook/bart-base)
in Norwegian on a single TPUv3-8 pod.
The example script uses the π€ Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.
To setup all relevant files for training, let's create a directory.
```bash
mkdir ./norwegian-bart-base
```
### Train tokenizer
In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**.
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 10 minutes depending on your hardware β.
```python
from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
"<s>",
"<pad>",
"</s>",
"<unk>",
"<mask>",
])
# Save files to disk
tokenizer.save("./norwegian-bart-base/tokenizer.json")
```
### Create configuration
Next, we create the model's configuration file. This is as simple
as loading and storing [`**facebook/bart-base**`](https://huggingface.co/facebook/bart-base)
in the local model folder:
```python
from transformers import BartConfig
config = BartConfig.from_pretrained("facebook/bart-base", vocab_size=50265)
config.save_pretrained("./norwegian-bart-base")
```
Great, we have set up our model repository. During training, we will automatically
push the training logs and model weights to the repo.
### Train model
Next we can run the example script to pretrain the model:
```bash
python run_bart_dlm_flax.py \
--output_dir="./norwegian-bart-base" \
--config_name="./norwegian-bart-base" \
--tokenizer_name="./norwegian-bart-base" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="1024" \
--per_device_train_batch_size="32" \
--per_device_eval_batch_size="32" \
--learning_rate="1e-4" \
--warmup_steps="2000" \
--overwrite_output_dir \
--logging_steps="500" \
--save_steps="2000" \
--eval_steps="2000" \
--push_to_hub
```
Training should converge at a loss and accuracy
of 1.36 and 0.77 respectively after 3 epochs on a single TPUv3-8.
This should take less than 6 hours.
Training statistics can be accessed on [tfhub.dev](https://tensorboard.dev/experiment/Maw62QlaSXWS0MOf2V2lbg/).
## Runtime evaluation
We also ran masked language modeling using PyTorch/XLA on a TPUv3-8, and PyTorch on 8 V100 GPUs. We report the
overall training time below.
For reproducibility, we state the training commands used for PyTorch/XLA and PyTorch further below.
| Task | [TPU v3-8 (Flax)](https://tensorboard.dev/experiment/GdYmdak2TWeVz0DDRYOrrg/) | [TPU v3-8 (Pytorch/XLA)](https://tensorboard.dev/experiment/7Jq1kcQQRAmy12KOdXek7A/)| [8 GPU (PyTorch)](https://tensorboard.dev/experiment/PJneV8FQRxa2unPw1QnVHA) |
|-------|-----------|------------|------------|
| MLM | 15h32m | 23h46m | 44h14m |
*All experiments are ran on Google Cloud Platform.
GPU experiments are ran without further optimizations besides JAX
transformations. GPU experiments are ran with full precision (fp32). "TPU v3-8"
are 8 TPU cores on 4 chips (each chips has 2 cores), while "8 GPU" are 8 GPU chips.
### Script to run MLM with PyTorch/XLA on TPUv3-8
For comparison one can run the same pre-training with PyTorch/XLA on TPU. To set up PyTorch/XLA on Cloud TPU VMs, please
refer to [this](https://cloud.google.com/tpu/docs/pytorch-xla-ug-tpu-vm) guide.
Having created the tokenzier and configuration in `norwegian-roberta-base`, we create the following symbolic links:
```bash
ln -s ~/transformers/examples/pytorch/language-modeling/run_mlm.py ./
ln -s ~/transformers/examples/pytorch/xla_spawn.py ./
```
, set the following environment variables:
```bash
export XRT_TPU_CONFIG="localservice;0;localhost:51011"
unset LD_PRELOAD
export NUM_TPUS=8
export TOKENIZERS_PARALLELISM=0
export MODEL_DIR="./norwegian-roberta-base"
mkdir -p ${MODEL_DIR}
```
, and start training as follows:
```bash
python3 xla_spawn.py --num_cores ${NUM_TPUS} run_mlm.py --output_dir="./runs" \
--model_type="roberta" \
--config_name="${MODEL_DIR}" \
--tokenizer_name="${MODEL_DIR}" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="128" \
--weight_decay="0.01" \
--per_device_train_batch_size="128" \
--per_device_eval_batch_size="128" \
--learning_rate="3e-4" \
--warmup_steps="1000" \
--overwrite_output_dir \
--num_train_epochs="18" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--do_train \
--do_eval \
--logging_steps="500" \
--evaluation_strategy="epoch" \
--report_to="tensorboard" \
--save_strategy="no"
```
### Script to compare pre-training with PyTorch on 8 GPU V100's
For comparison you can run the same pre-training with PyTorch on GPU. Note that we have to make use of `gradient_accumulation`
because the maximum batch size that fits on a single V100 GPU is 32 instead of 128.
Having created the tokenzier and configuration in `norwegian-roberta-base`, we create the following symbolic links:
```bash
ln -s ~/transformers/examples/pytorch/language-modeling/run_mlm.py ./
```
, set some environment variables:
```bash
export NUM_GPUS=8
export TOKENIZERS_PARALLELISM=0
export MODEL_DIR="./norwegian-roberta-base"
mkdir -p ${MODEL_DIR}
```
, and can start training as follows:
```bash
python3 -m torch.distributed.launch --nproc_per_node ${NUM_GPUS} run_mlm.py \
--output_dir="${MODEL_DIR}" \
--model_type="roberta" \
--config_name="${MODEL_DIR}" \
--tokenizer_name="${MODEL_DIR}" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="128" \
--weight_decay="0.01" \
--per_device_train_batch_size="32" \
--per_device_eval_batch_size="32" \
--gradient_accumulation="4" \
--learning_rate="3e-4" \
--warmup_steps="1000" \
--overwrite_output_dir \
--num_train_epochs="18" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--do_train \
--do_eval \
--logging_steps="500" \
--evaluation_strategy="steps" \
--report_to="tensorboard" \
--save_strategy="no"
```
|