Spaces:
Paused
Paused
File size: 4,781 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
#### Fine-tuning BERT on SQuAD1.0 with relative position embeddings
The following examples show how to fine-tune BERT models with different relative position embeddings. The BERT model
`bert-base-uncased` was pretrained with default absolute position embeddings. We provide the following pretrained
models which were pre-trained on the same training data (BooksCorpus and English Wikipedia) as in the BERT model
training, but with different relative position embeddings.
* `zhiheng-huang/bert-base-uncased-embedding-relative-key`, trained from scratch with relative embedding proposed by
Shaw et al., [Self-Attention with Relative Position Representations](https://arxiv.org/abs/1803.02155)
* `zhiheng-huang/bert-base-uncased-embedding-relative-key-query`, trained from scratch with relative embedding method 4
in Huang et al. [Improve Transformer Models with Better Relative Position Embeddings](https://arxiv.org/abs/2009.13658)
* `zhiheng-huang/bert-large-uncased-whole-word-masking-embedding-relative-key-query`, fine-tuned from model
`bert-large-uncased-whole-word-masking` with 3 additional epochs with relative embedding method 4 in Huang et al.
[Improve Transformer Models with Better Relative Position Embeddings](https://arxiv.org/abs/2009.13658)
##### Base models fine-tuning
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_squad.py \
--model_name_or_path zhiheng-huang/bert-base-uncased-embedding-relative-key-query \
--dataset_name squad \
--do_train \
--do_eval \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 512 \
--doc_stride 128 \
--output_dir relative_squad \
--per_device_eval_batch_size=60 \
--per_device_train_batch_size=6
```
Training with the above command leads to the following results. It boosts the BERT default from f1 score of 88.52 to 90.54.
```bash
'exact': 83.6802270577105, 'f1': 90.54772098174814
```
The change of `max_seq_length` from 512 to 384 in the above command leads to the f1 score of 90.34. Replacing the above
model `zhiheng-huang/bert-base-uncased-embedding-relative-key-query` with
`zhiheng-huang/bert-base-uncased-embedding-relative-key` leads to the f1 score of 89.51. The changing of 8 gpus to one
gpu training leads to the f1 score of 90.71.
##### Large models fine-tuning
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_squad.py \
--model_name_or_path zhiheng-huang/bert-large-uncased-whole-word-masking-embedding-relative-key-query \
--dataset_name squad \
--do_train \
--do_eval \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 512 \
--doc_stride 128 \
--output_dir relative_squad \
--per_gpu_eval_batch_size=6 \
--per_gpu_train_batch_size=2 \
--gradient_accumulation_steps 3
```
Training with the above command leads to the f1 score of 93.52, which is slightly better than the f1 score of 93.15 for
`bert-large-uncased-whole-word-masking`.
#### Distributed training
Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD1.1:
```bash
python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_squad.py \
--model_name_or_path bert-large-uncased-whole-word-masking \
--dataset_name squad \
--do_train \
--do_eval \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./examples/models/wwm_uncased_finetuned_squad/ \
--per_device_eval_batch_size=3 \
--per_device_train_batch_size=3 \
```
Training with the previously defined hyper-parameters yields the following results:
```bash
f1 = 93.15
exact_match = 86.91
```
This fine-tuned model is available as a checkpoint under the reference
[`bert-large-uncased-whole-word-masking-finetuned-squad`](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad).
## Results
Larger batch size may improve the performance while costing more memory.
##### Results for SQuAD1.0 with the previously defined hyper-parameters:
```python
{
"exact": 85.45884578997162,
"f1": 92.5974600601065,
"total": 10570,
"HasAns_exact": 85.45884578997162,
"HasAns_f1": 92.59746006010651,
"HasAns_total": 10570
}
```
##### Results for SQuAD2.0 with the previously defined hyper-parameters:
```python
{
"exact": 80.4177545691906,
"f1": 84.07154997729623,
"total": 11873,
"HasAns_exact": 76.73751686909581,
"HasAns_f1": 84.05558584352873,
"HasAns_total": 5928,
"NoAns_exact": 84.0874684608915,
"NoAns_f1": 84.0874684608915,
"NoAns_total": 5945
}
``` |