Spaces:
Paused
Paused
File size: 7,123 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import pytest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
MBart50TokenizerFast,
MBartConfig,
MBartForConditionalGeneration,
TranslationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch, slow
from .test_pipelines_common import ANY
@is_pipeline_test
class TranslationPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
tf_model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def get_test_pipeline(self, model, tokenizer, processor):
if isinstance(model.config, MBartConfig):
src_lang, tgt_lang = list(tokenizer.lang_code_to_id.keys())[:2]
translator = TranslationPipeline(model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang)
else:
translator = TranslationPipeline(model=model, tokenizer=tokenizer)
return translator, ["Some string", "Some other text"]
def run_pipeline_test(self, translator, _):
outputs = translator("Some string")
self.assertEqual(outputs, [{"translation_text": ANY(str)}])
outputs = translator(["Some string"])
self.assertEqual(outputs, [{"translation_text": ANY(str)}])
outputs = translator(["Some string", "other string"])
self.assertEqual(outputs, [{"translation_text": ANY(str)}, {"translation_text": ANY(str)}])
@require_torch
def test_small_model_pt(self):
translator = pipeline("translation_en_to_ro", model="patrickvonplaten/t5-tiny-random", framework="pt")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide"
" Beide Beide"
)
}
],
)
@require_tf
def test_small_model_tf(self):
translator = pipeline("translation_en_to_ro", model="patrickvonplaten/t5-tiny-random", framework="tf")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide"
" Beide Beide"
)
}
],
)
@require_torch
def test_en_to_de_pt(self):
translator = pipeline("translation_en_to_de", model="patrickvonplaten/t5-tiny-random", framework="pt")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"monoton monoton monoton monoton monoton monoton monoton monoton monoton monoton urine urine"
" urine urine urine urine urine urine urine"
)
}
],
)
@require_tf
def test_en_to_de_tf(self):
translator = pipeline("translation_en_to_de", model="patrickvonplaten/t5-tiny-random", framework="tf")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"monoton monoton monoton monoton monoton monoton monoton monoton monoton monoton urine urine"
" urine urine urine urine urine urine urine"
)
}
],
)
class TranslationNewFormatPipelineTests(unittest.TestCase):
@require_torch
@slow
def test_default_translations(self):
# We don't provide a default for this pair
with self.assertRaises(ValueError):
pipeline(task="translation_cn_to_ar")
# but we do for this one
translator = pipeline(task="translation_en_to_de")
self.assertEqual(translator._preprocess_params["src_lang"], "en")
self.assertEqual(translator._preprocess_params["tgt_lang"], "de")
@require_torch
@slow
def test_multilingual_translation(self):
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator = pipeline(task="translation", model=model, tokenizer=tokenizer)
# Missing src_lang, tgt_lang
with self.assertRaises(ValueError):
translator("This is a test")
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="ar_AR")
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}])
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="hi_IN")
self.assertEqual(outputs, [{"translation_text": "यह एक परीक्षण है"}])
# src_lang, tgt_lang can be defined at pipeline call time
translator = pipeline(task="translation", model=model, tokenizer=tokenizer, src_lang="en_XX", tgt_lang="ar_AR")
outputs = translator("This is a test")
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}])
@require_torch
def test_translation_on_odd_language(self):
model = "patrickvonplaten/t5-tiny-random"
translator = pipeline(task="translation_cn_to_ar", model=model)
self.assertEqual(translator._preprocess_params["src_lang"], "cn")
self.assertEqual(translator._preprocess_params["tgt_lang"], "ar")
@require_torch
def test_translation_default_language_selection(self):
model = "patrickvonplaten/t5-tiny-random"
with pytest.warns(UserWarning, match=r".*translation_en_to_de.*"):
translator = pipeline(task="translation", model=model)
self.assertEqual(translator.task, "translation_en_to_de")
self.assertEqual(translator._preprocess_params["src_lang"], "en")
self.assertEqual(translator._preprocess_params["tgt_lang"], "de")
@require_torch
def test_translation_with_no_language_no_model_fails(self):
with self.assertRaises(ValueError):
pipeline(task="translation")
|