File size: 16,963 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Self-training for sequence classification."""

import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional

import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm

import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy


logger = logging.getLogger(__name__)

MODEL_BIN_FILE = "pytorch_model.bin"


@dataclasses.dataclass
class STModelArguments:
    """Arguments pertaining to which config/tokenizer/model we are going to fine-tune from."""

    model_name_or_path: str = dataclasses.field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."}
    )
    cache_dir: Optional[str] = dataclasses.field(
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."},
    )


@dataclasses.dataclass
class STDataArguments:
    """Arguments pertaining to what data we are going to input our model for training and evaluation."""

    train_file: str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."})
    infer_file: str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."})
    eval_file: Optional[str] = dataclasses.field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
    task_name: Optional[str] = dataclasses.field(
        default=None,
        metadata={"help": "The name of the task to train on."},
    )
    label_list: Optional[List[str]] = dataclasses.field(
        default=None, metadata={"help": "The list of labels for the task."}
    )


@dataclasses.dataclass
class STTrainingArguments:
    """Training arguments pertaining to the training loop itself."""

    output_dir: str = dataclasses.field(
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."}
    )
    eval_metric: Optional[str] = dataclasses.field(
        default="accuracy", metadata={"help": "The evaluation metric used for the task."}
    )
    evaluation_strategy: Optional[str] = dataclasses.field(
        default="no",
        metadata={
            "help": 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]'
        },
    )
    early_stopping_patience: Optional[int] = dataclasses.field(
        default=10,
        metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."},
    )
    early_stopping_threshold: Optional[float] = dataclasses.field(
        default=0.0,
        metadata={
            "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions."
        },
    )
    do_filter_by_confidence: Optional[bool] = dataclasses.field(
        default=False,
        metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."},
    )
    do_filter_by_val_performance: Optional[bool] = dataclasses.field(
        default=False,
        metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."},
    )
    finetune_on_labeled_data: Optional[bool] = dataclasses.field(
        default=False,
        metadata={"help": "Whether to fine-tune on labeled data after pseudo training."},
    )
    confidence_threshold: Optional[float] = dataclasses.field(
        default=0.0,
        metadata={"help": "Confidence threshold for pseudo-labeled data filtering."},
    )
    max_selftrain_iterations: Optional[int] = dataclasses.field(
        default=100,
        metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."},
    )
    seed: Optional[int] = dataclasses.field(
        default=None,
        metadata={"help": "Random seed for initialization."},
    )


def create_pseudo_labeled_data(args, infer_input, infer_output, eval_result, id2label, next_data_dir):
    """Create pseudeo labeled data for the next self-training iteration."""

    dataset = datasets.concatenate_datasets([infer_input, infer_output], axis=1)

    if args.do_filter_by_confidence:
        dataset = dataset.filter(lambda example: example["probability"] > args.confidence_threshold)

    if args.do_filter_by_val_performance:
        assert eval_result >= 0.0 and eval_result <= 1.0
        num_selected_rows = int(eval_result * len(dataset))
        print(num_selected_rows)
        dataset = dataset.sort("probability", reverse=True)
        dataset = dataset.select(range(num_selected_rows))

    dataset = dataset.remove_columns(["label", "probability"])
    dataset = dataset.rename_column("prediction", "label")
    dataset = dataset.map(lambda example: {"label": id2label[example["label"]]})
    dataset = dataset.shuffle(seed=args.seed)

    pseudo_labeled_data_file = os.path.join(next_data_dir, f"train_pseudo.{args.data_file_extension}")
    if args.data_file_extension == "csv":
        dataset.to_csv(pseudo_labeled_data_file, index=False)
    else:
        dataset.to_json(pseudo_labeled_data_file)


def selftrain(model_name_or_path, train_file, infer_file, output_dir, **kwargs):
    """Self-training a pre-trained model on a downstream task.

    Args:
      model_name_or_path: Path to pretrained model or model identifier from
        huggingface.co/models.
      train_file: A csv or a json file containing the training data.
      infer_file: A csv or a json file containing the data to predict on.
      output_dir: The output directory where the model predictions and checkpoints
        will be written.
      **kwargs: Dictionary of key/value pairs with which to update the
        configuration object after loading. The values in kwargs of any keys which
        are configuration attributes will be used to override the loaded values.
    """
    # Initialize the accelerator. We will let the accelerator handle device
    # placement for us.
    accelerator = Accelerator()
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state)

    # Setup logging, we only want one process per machine to log things on the
    # screen. accelerator.is_local_main_process is only True for one process per
    # machine.
    logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)

    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    model_args = STModelArguments(model_name_or_path=model_name_or_path)
    data_args = STDataArguments(train_file=train_file, infer_file=infer_file)
    training_args = STTrainingArguments(output_dir=output_dir)
    args = argparse.Namespace()

    for arg_class in (model_args, data_args, training_args):
        for key, value in vars(arg_class).items():
            setattr(args, key, value)

    for key, value in kwargs.items():
        if hasattr(args, key):
            setattr(args, key, value)

    # Sanity checks
    data_files = {}
    args.data_file_extension = None

    # You need to provide the training data and the data to predict on
    assert args.train_file is not None
    assert args.infer_file is not None
    data_files["train"] = args.train_file
    data_files["infer"] = args.infer_file

    if args.evaluation_strategy != IntervalStrategy.NO.value:
        assert args.eval_file is not None
        data_files["eval"] = args.eval_file

    for key in data_files:
        extension = data_files[key].split(".")[-1]
        assert extension in ["csv", "json"], f"`{key}_file` should be a csv or a json file."
        if args.data_file_extension is None:
            args.data_file_extension = extension
        else:
            assert extension == args.data_file_extension, f"`{key}_file` should be a {args.data_file_extension} file`."

    assert (
        args.eval_metric in datasets.list_metrics()
    ), f"{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}."

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    logger.info("Creating the initial data directory for self-training...")
    data_dir_format = f"{args.output_dir}/self-train_iter-{{}}".format
    initial_data_dir = data_dir_format(0)

    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
            os.makedirs(initial_data_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    best_iteration = None
    best_eval_result = None
    early_stopping_patience_counter = 0
    should_training_stop = False
    # Show the progress bar
    progress_bar = tqdm(range(args.max_selftrain_iterations), disable=not accelerator.is_local_main_process)

    # Self-train
    for iteration in range(0, int(args.max_selftrain_iterations)):
        current_data_dir = data_dir_format(iteration)
        assert os.path.exists(current_data_dir)

        # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
        # iteration > 0
        current_output_dir = os.path.join(current_data_dir, "stage-1")
        arguments_dict = {
            "accelerator": accelerator,
            "model_name_or_path": args.model_name_or_path,
            "cache_dir": args.cache_dir,
            "do_train": True,
            "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"],
            "do_eval": True if args.eval_file is not None else False,
            "eval_file": data_files["eval"],
            "do_predict": True,
            "infer_file": data_files["infer"],
            "task_name": args.task_name,
            "label_list": args.label_list,
            "output_dir": current_output_dir,
            "eval_metric": args.eval_metric,
            "evaluation_strategy": args.evaluation_strategy,
            "early_stopping_patience": args.early_stopping_patience,
            "early_stopping_threshold": args.early_stopping_threshold,
            "seed": args.seed,
        }
        # Add additional training arguments
        for key, value in kwargs.items():
            if key not in arguments_dict and not hasattr(training_args, key):
                arguments_dict.update({key: value})

        model_bin_file_path = os.path.join(current_output_dir, "best-checkpoint", MODEL_BIN_FILE)
        if os.path.exists(model_bin_file_path):
            logger.info(
                "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.",
                model_bin_file_path,
                iteration,
            )
        else:
            logger.info("***** Running self-training: iteration: %d, stage: 1 *****", iteration)
            finetune(**arguments_dict)
            accelerator.wait_for_everyone()
            assert os.path.exists(model_bin_file_path)
            logger.info("Self-training job completed: iteration: %d, stage: 1.", iteration)

        if iteration > 0 and args.finetune_on_labeled_data:
            # Stage 2 (optional): fine-tuning on the original labeled data
            model_path = os.path.join(current_output_dir, "best-checkpoint")
            current_output_dir = os.path.join(current_data_dir, "stage-2")
            # Update arguments_dict
            arguments_dict["model_name_or_path"] = model_path
            arguments_dict["train_file"] = data_files["train"]
            arguments_dict["output_dir"] = current_output_dir

            model_bin_file_path = os.path.join(current_output_dir, "best-checkpoint", MODEL_BIN_FILE)
            if os.path.exists(model_bin_file_path):
                logger.info(
                    "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.",
                    model_bin_file_path,
                    iteration,
                )
            else:
                logger.info("***** Running self-training: iteration: %d, stage: 2 *****", iteration)
                finetune(**arguments_dict)
                accelerator.wait_for_everyone()
                assert os.path.exists(model_bin_file_path)
                logger.info("Self-training job completed: iteration: %d, stage: 2.", iteration)

        new_iteration = iteration
        next_data_dir = data_dir_format(iteration + 1)

        config = AutoConfig.from_pretrained(os.path.join(current_output_dir, "best-checkpoint"))
        id2label = config.id2label
        eval_results_file = os.path.join(current_output_dir, "eval_results_best-checkpoint.json")
        test_results_file = os.path.join(current_output_dir, "test_results_best-checkpoint.json")
        assert os.path.exists(eval_results_file)

        with open(eval_results_file, "r") as f:
            eval_result = float(json.load(f)[args.eval_metric])
        infer_output_file = os.path.join(current_output_dir, "infer_output_best-checkpoint.csv")
        assert os.path.exists(infer_output_file)
        # Loading the dataset from local csv or json files.
        infer_input = load_dataset(args.data_file_extension, data_files={"data": data_files["infer"]})["data"]
        infer_output = load_dataset("csv", data_files={"data": infer_output_file})["data"]

        if accelerator.is_main_process:
            os.makedirs(next_data_dir, exist_ok=True)
            shutil.copy(eval_results_file, os.path.join(output_dir, f"eval_results_iter-{iteration}.json"))
            if os.path.exists(test_results_file):
                shutil.copy(eval_results_file, os.path.join(output_dir, f"test_results_iter-{iteration}.json"))
            create_pseudo_labeled_data(args, infer_input, infer_output, eval_result, id2label, next_data_dir)
        accelerator.wait_for_everyone()

        data_files["train_pseudo"] = os.path.join(next_data_dir, f"train_pseudo.{args.data_file_extension}")

        if args.evaluation_strategy != IntervalStrategy.NO.value:
            new_eval_result = eval_result

            if best_iteration is None:
                best_iteration = new_iteration
                best_eval_result = new_eval_result
            else:
                if new_eval_result - best_eval_result > args.early_stopping_threshold:
                    best_iteration = new_iteration
                    best_eval_result = new_eval_result
                    early_stopping_patience_counter = 0
                else:
                    if new_eval_result == best_eval_result:
                        best_iteration = new_iteration
                        best_eval_result = new_eval_result
                    early_stopping_patience_counter += 1

                if early_stopping_patience_counter >= args.early_stopping_patience:
                    should_training_stop = True

        progress_bar.update(1)

        if should_training_stop:
            break

    if best_iteration is not None:
        # Save the best iteration
        logger.info("Best iteration: %d", best_iteration)
        logger.info("Best evaluation result: %s = %f", args.eval_metric, best_eval_result)
        accelerator.wait_for_everyone()
        if accelerator.is_main_process:
            shutil.copy(
                os.path.join(output_dir, f"eval_results_iter-{iteration}.json"),
                os.path.join(output_dir, "eval_results_best-iteration.json"),
            )
    else:
        # Assume that the last iteration is the best
        logger.info("Best iteration: %d", args.max_selftrain_iterations - 1)
        logger.info("Best evaluation result: %s = %f", args.eval_metric, eval_result)
        accelerator.wait_for_everyone()
        if accelerator.is_main_process:
            shutil.copy(
                os.path.join(output_dir, f"eval_results_iter-{args.max_selftrain_iterations - 1}.json"),
                os.path.join(output_dir, "eval_results_best-iteration.json"),
            )