File size: 10,725 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->

# Text classification examples

## GLUE tasks

Based on the script [`run_glue.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py).

Fine-tuning the library models for sequence classification on the GLUE benchmark: [General Language Understanding
Evaluation](https://gluebenchmark.com/). This script can fine-tune any of the models on the [hub](https://huggingface.co/models)
and can also be used for a dataset hosted on our [hub](https://huggingface.co/datasets) or your own data in a csv or a JSON file
(the script might need some tweaks in that case, refer to the comments inside for help).

GLUE is made up of a total of 9 different tasks. Here is how to run the script on one of them:

```bash
export TASK_NAME=mrpc

python run_glue.py \
  --model_name_or_path bert-base-cased \
  --task_name $TASK_NAME \
  --do_train \
  --do_eval \
  --max_seq_length 128 \
  --per_device_train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3 \
  --output_dir /tmp/$TASK_NAME/
```

where task name can be one of cola, sst2, mrpc, stsb, qqp, mnli, qnli, rte, wnli.

We get the following results on the dev set of the benchmark with the previous commands (with an exception for MRPC and
WNLI which are tiny and where we used 5 epochs instead of 3). Trainings are seeded so you should obtain the same
results with PyTorch 1.6.0 (and close results with different versions), training times are given for information (a
single Titan RTX was used):

| Task  | Metric                       | Result      | Training time |
|-------|------------------------------|-------------|---------------|
| CoLA  | Matthews corr                | 56.53       | 3:17          |
| SST-2 | Accuracy                     | 92.32       | 26:06         |
| MRPC  | F1/Accuracy                  | 88.85/84.07 | 2:21          |
| STS-B | Pearson/Spearman corr.       | 88.64/88.48 | 2:13          |
| QQP   | Accuracy/F1                  | 90.71/87.49 | 2:22:26       |
| MNLI  | Matched acc./Mismatched acc. | 83.91/84.10 | 2:35:23       |
| QNLI  | Accuracy                     | 90.66       | 40:57         |
| RTE   | Accuracy                     | 65.70       | 57            |
| WNLI  | Accuracy                     | 56.34       | 24            |

Some of these results are significantly different from the ones reported on the test set of GLUE benchmark on the
website. For QQP and WNLI, please refer to [FAQ #12](https://gluebenchmark.com/faq) on the website.

The following example fine-tunes BERT on the `imdb` dataset hosted on our [hub](https://huggingface.co/datasets):

```bash
python run_glue.py \
  --model_name_or_path bert-base-cased \
  --dataset_name imdb  \
  --do_train \
  --do_predict \
  --max_seq_length 128 \
  --per_device_train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3 \
  --output_dir /tmp/imdb/
```

> If your model classification head dimensions do not fit the number of labels in the dataset, you can specify `--ignore_mismatched_sizes` to adapt it.

## Text classification
As an alternative, we can use the script [`run_classification.py`](./run_classification.py) to fine-tune models on a single/multi-label classification task. 

The following example fine-tunes BERT on the `en` subset of  [`amazon_reviews_multi`](https://huggingface.co/datasets/amazon_reviews_multi) dataset.
We can specify the metric, the label column and aso choose which text columns to use jointly for classification. 
```bash
dataset="amazon_reviews_multi"
subset="en"
python run_classification.py \
    --model_name_or_path  bert-base-uncased \
    --dataset_name ${dataset} \
    --dataset_config_name ${subset} \
    --shuffle_train_dataset \
    --metric_name accuracy \
    --text_column_name "review_title,review_body,product_category" \
    --text_column_delimiter "\n" \
    --label_column_name stars \
    --do_train \
    --do_eval \
    --max_seq_length 512 \
    --per_device_train_batch_size 32 \
    --learning_rate 2e-5 \
    --num_train_epochs 1 \
    --output_dir /tmp/${dataset}_${subset}/
```
Training for 1 epoch results in acc of around 0.5958 for review_body only and 0.659 for title+body+category.

The following is a multi-label classification example. It fine-tunes BERT on the `reuters21578` dataset hosted on our [hub](https://huggingface.co/datasets/reuters21578):
```bash
dataset="reuters21578"
subset="ModApte"
python run_classification.py \
    --model_name_or_path bert-base-uncased \
    --dataset_name ${dataset} \
    --dataset_config_name ${subset} \
    --shuffle_train_dataset \
    --remove_splits "unused" \
    --metric_name f1 \
    --text_column_name text \
    --label_column_name topics \
    --do_train \
    --do_eval \
    --max_seq_length 512 \
    --per_device_train_batch_size 32 \
    --learning_rate 2e-5 \
    --num_train_epochs 15 \
    --output_dir /tmp/${dataset}_${subset}/ 
```
 It results in a Micro F1 score of around 0.82 without any text and label filtering. Note that you have to explictly remove the "unused" split from the dataset, since it is not used for classification.

### Mixed precision training

If you have a GPU with mixed precision capabilities (architecture Pascal or more recent), you can use mixed precision
training with PyTorch 1.6.0 or latest, or by installing the [Apex](https://github.com/NVIDIA/apex) library for previous
versions. Just add the flag `--fp16` to your command launching one of the scripts mentioned above!

Using mixed precision training usually results in 2x-speedup for training with the same final results:

| Task  | Metric                       | Result      | Training time | Result (FP16) | Training time (FP16) |
|-------|------------------------------|-------------|---------------|---------------|----------------------|
| CoLA  | Matthews corr                | 56.53       | 3:17          | 56.78         | 1:41                 |
| SST-2 | Accuracy                     | 92.32       | 26:06         | 91.74         | 13:11                |
| MRPC  | F1/Accuracy                  | 88.85/84.07 | 2:21          | 88.12/83.58   | 1:10                 |
| STS-B | Pearson/Spearman corr.       | 88.64/88.48 | 2:13          | 88.71/88.55   | 1:08                 |
| QQP   | Accuracy/F1                  | 90.71/87.49 | 2:22:26       | 90.67/87.43   | 1:11:54              |
| MNLI  | Matched acc./Mismatched acc. | 83.91/84.10 | 2:35:23       | 84.04/84.06   | 1:17:06              |
| QNLI  | Accuracy                     | 90.66       | 40:57         | 90.96         | 20:16                |
| RTE   | Accuracy                     | 65.70       | 57            | 65.34         | 29                   |
| WNLI  | Accuracy                     | 56.34       | 24            | 56.34         | 12                   |


## PyTorch version, no Trainer

Based on the script [`run_glue_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue_no_trainer.py).

Like `run_glue.py`, this script allows you to fine-tune any of the models on the [hub](https://huggingface.co/models) on a
text classification task, either a GLUE task or your own data in a csv or a JSON file. The main difference is that this
script exposes the bare training loop, to allow you to quickly experiment and add any customization you would like.

It offers less options than the script with `Trainer` (for instance you can easily change the options for the optimizer
or the dataloaders directly in the script) but still run in a distributed setup, on TPU and supports mixed precision by
the mean of the [🤗 `Accelerate`](https://github.com/huggingface/accelerate) library. You can use the script normally
after installing it:

```bash
pip install git+https://github.com/huggingface/accelerate
```

then

```bash
export TASK_NAME=mrpc

python run_glue_no_trainer.py \
  --model_name_or_path bert-base-cased \
  --task_name $TASK_NAME \
  --max_length 128 \
  --per_device_train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3 \
  --output_dir /tmp/$TASK_NAME/
```

You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run

```bash
accelerate config
```

and reply to the questions asked. Then

```bash
accelerate test
```

that will check everything is ready for training. Finally, you can launch training with

```bash
export TASK_NAME=mrpc

accelerate launch run_glue_no_trainer.py \
  --model_name_or_path bert-base-cased \
  --task_name $TASK_NAME \
  --max_length 128 \
  --per_device_train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3 \
  --output_dir /tmp/$TASK_NAME/
```

This command is the same and will work for:

- a CPU-only setup
- a setup with one GPU
- a distributed training with several GPUs (single or multi node)
- a training on TPUs

Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it.

## XNLI

Based on the script [`run_xnli.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_xnli.py).

[XNLI](https://cims.nyu.edu/~sbowman/xnli/) is a crowd-sourced dataset based on [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/). It is an evaluation benchmark for cross-lingual text representations. Pairs of text are labeled with textual entailment annotations for 15 different languages (including both high-resource language such as English and low-resource languages such as Swahili).

#### Fine-tuning on XNLI

This example code fine-tunes mBERT (multi-lingual BERT) on the XNLI dataset. It runs in 106 mins on a single tesla V100 16GB.

```bash
python run_xnli.py \
  --model_name_or_path bert-base-multilingual-cased \
  --language de \
  --train_language en \
  --do_train \
  --do_eval \
  --per_device_train_batch_size 32 \
  --learning_rate 5e-5 \
  --num_train_epochs 2.0 \
  --max_seq_length 128 \
  --output_dir /tmp/debug_xnli/ \
  --save_steps -1
```

Training with the previously defined hyper-parameters yields the following results on the **test** set:

```bash
acc = 0.7093812375249501
```