File size: 7,203 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A subclass of `Trainer` specific to Question-Answering tasks
"""
import math
import time
from typing import Dict, List, Optional

from torch.utils.data import Dataset

from transformers import Seq2SeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics


if is_torch_tpu_available(check_device=False):
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met


class QuestionAnsweringSeq2SeqTrainer(Seq2SeqTrainer):
    def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs):
        super().__init__(*args, **kwargs)
        self.eval_examples = eval_examples
        self.post_process_function = post_process_function

    # def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"):
    def evaluate(
        self,
        eval_dataset: Optional[Dataset] = None,
        eval_examples=None,
        ignore_keys: Optional[List[str]] = None,
        metric_key_prefix: str = "eval",
        **gen_kwargs,
    ) -> Dict[str, float]:
        gen_kwargs = gen_kwargs.copy()

        # Use legacy argument setting if a) the option is not explicitly passed; and b) the argument is set in the
        # training args
        if gen_kwargs.get("max_length") is None and self.args.generation_max_length is not None:
            gen_kwargs["max_length"] = self.args.generation_max_length
        if gen_kwargs.get("num_beams") is None and self.args.generation_num_beams is not None:
            gen_kwargs["num_beams"] = self.args.generation_num_beams
        self._gen_kwargs = gen_kwargs

        eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset
        eval_dataloader = self.get_eval_dataloader(eval_dataset)
        eval_examples = self.eval_examples if eval_examples is None else eval_examples

        # Temporarily disable metric computation, we will do it in the loop here.
        compute_metrics = self.compute_metrics
        self.compute_metrics = None
        start_time = time.time()
        eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
        try:
            output = eval_loop(
                eval_dataloader,
                description="Evaluation",
                # No point gathering the predictions if there are no metrics, otherwise we defer to
                # self.args.prediction_loss_only
                prediction_loss_only=True if compute_metrics is None else None,
                ignore_keys=ignore_keys,
                metric_key_prefix=metric_key_prefix,
            )
        finally:
            self.compute_metrics = compute_metrics
        total_batch_size = self.args.eval_batch_size * self.args.world_size
        if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
            start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
        output.metrics.update(
            speed_metrics(
                metric_key_prefix,
                start_time,
                num_samples=output.num_samples,
                num_steps=math.ceil(output.num_samples / total_batch_size),
            )
        )

        if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
            # Only the main node write the results by default
            eval_preds = self.post_process_function(eval_examples, eval_dataset, output)
            metrics = self.compute_metrics(eval_preds)

            # Prefix all keys with metric_key_prefix + '_'
            for key in list(metrics.keys()):
                if not key.startswith(f"{metric_key_prefix}_"):
                    metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

            metrics.update(output.metrics)
        else:
            metrics = output.metrics

        if self.args.should_log:
            # Only the main node log the results by default
            self.log(metrics)

        if self.args.tpu_metrics_debug or self.args.debug:
            # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
            xm.master_print(met.metrics_report())

        self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics)
        return metrics

    def predict(
        self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test", **gen_kwargs
    ):
        self._gen_kwargs = gen_kwargs.copy()

        predict_dataloader = self.get_test_dataloader(predict_dataset)

        # Temporarily disable metric computation, we will do it in the loop here.
        compute_metrics = self.compute_metrics
        self.compute_metrics = None
        start_time = time.time()
        eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
        try:
            output = eval_loop(
                predict_dataloader,
                description="Prediction",
                # No point gathering the predictions if there are no metrics, otherwise we defer to
                # self.args.prediction_loss_only
                prediction_loss_only=True if compute_metrics is None else None,
                ignore_keys=ignore_keys,
                metric_key_prefix=metric_key_prefix,
            )
        finally:
            self.compute_metrics = compute_metrics

        total_batch_size = self.args.eval_batch_size * self.args.world_size
        if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
            start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
        output.metrics.update(
            speed_metrics(
                metric_key_prefix,
                start_time,
                num_samples=output.num_samples,
                num_steps=math.ceil(output.num_samples / total_batch_size),
            )
        )
        if self.post_process_function is None or self.compute_metrics is None:
            return output

        predictions = self.post_process_function(predict_examples, predict_dataset, output, "predict")
        metrics = self.compute_metrics(predictions)

        # Prefix all keys with metric_key_prefix + '_'
        for key in list(metrics.keys()):
            if not key.startswith(f"{metric_key_prefix}_"):
                metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
        metrics.update(output.metrics)
        return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics)