Spaces:
Paused
Paused
File size: 28,306 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Esporta modelli 🤗 Transformers
Se devi implementare 🤗 modelli Transformers in ambienti di produzione, noi
consigliamo di esportarli in un formato serializzato che può essere caricato ed eseguito
su runtime e hardware specializzati. In questa guida ti mostreremo come farlo
esporta 🤗 Modelli Transformers in due formati ampiamente utilizzati: ONNX e TorchScript.
Una volta esportato, un modello può essere ottimizato per l'inferenza tramite tecniche come
la quantizzazione e soppressione. Se sei interessato a ottimizzare i tuoi modelli per l'esecuzione
con la massima efficienza, dai un'occhiata a [🤗 Optimum
library](https://github.com/huggingface/optimum).
## ONNX
Il progetto [ONNX (Open Neural Network eXchange)](http://onnx.ai) Il progetto onnx è un open
standard che definisce un insieme comune di operatori e un formato di file comune a
rappresentano modelli di deep learning in un'ampia varietà di framework, tra cui
PyTorch e TensorFlow. Quando un modello viene esportato nel formato ONNX, questi
operatori sono usati per costruire un grafico computazionale (often called an
_intermediate representation_) che rappresenta il flusso di dati attraverso la
rete neurale.
Esponendo un grafico con operatori e tipi di dati standardizzati, ONNX rende
più facile passare da un framework all'altro. Ad esempio, un modello allenato in PyTorch può
essere esportato in formato ONNX e quindi importato in TensorFlow (e viceversa).
🤗 Transformers fornisce un pacchetto `transformers.onnx` che ti consente di
convertire i checkpoint del modello in un grafico ONNX sfruttando gli oggetti di configurazione.
Questi oggetti di configurazione sono già pronti per una serie di architetture di modelli,
e sono progettati per essere facilmente estensibili ad altre architetture.
Le configurazioni pronte includono le seguenti architetture:
<!--This table is automatically generated by `make fix-copies`, do not fill manually!-->
- ALBERT
- BART
- BEiT
- BERT
- BigBird
- BigBird-Pegasus
- Blenderbot
- BlenderbotSmall
- CamemBERT
- ConvBERT
- Data2VecText
- Data2VecVision
- DeiT
- DistilBERT
- ELECTRA
- FlauBERT
- GPT Neo
- GPT-J
- I-BERT
- LayoutLM
- M2M100
- Marian
- mBART
- MobileBERT
- OpenAI GPT-2
- Perceiver
- PLBart
- RoBERTa
- RoFormer
- SqueezeBERT
- T5
- ViT
- XLM
- XLM-RoBERTa
- XLM-RoBERTa-XL
Nelle prossime due sezioni, ti mostreremo come:
* Esporta un modello supportato usando il pacchetto `transformers.onnx`.
* Esporta un modello personalizzato per un'architettura non supportata.
### Esportazione di un modello in ONNX
Per esportare un modello 🤗 Transformers in ONNX, dovrai prima installarne alcune
dipendenze extra:
```bash
pip install transformers[onnx]
```
Il pacchetto `transformers.onnx` può essere usato come modulo Python:
```bash
python -m transformers.onnx --help
usage: Hugging Face Transformers ONNX exporter [-h] -m MODEL [--feature {causal-lm, ...}] [--opset OPSET] [--atol ATOL] output
positional arguments:
output Path indicating where to store generated ONNX model.
optional arguments:
-h, --help show this help message and exit
-m MODEL, --model MODEL
Model ID on huggingface.co or path on disk to load model from.
--feature {causal-lm, ...}
The type of features to export the model with.
--opset OPSET ONNX opset version to export the model with.
--atol ATOL Absolute difference tolerance when validating the model.
```
L'esportazione di un checkpoint utilizzando una configurazione già pronta può essere eseguita come segue:
```bash
python -m transformers.onnx --model=distilbert-base-uncased onnx/
```
che dovrebbe mostrare i seguenti log:
```bash
Validating ONNX model...
-[✓] ONNX model output names match reference model ({'last_hidden_state'})
- Validating ONNX Model output "last_hidden_state":
-[✓] (2, 8, 768) matches (2, 8, 768)
-[✓] all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
```
Questo esporta un grafico ONNX del checkpoint definito dall'argomento `--model`.
In questo esempio è `distilbert-base-uncased`, ma può essere qualsiasi checkpoint
Hugging Face Hub o uno memorizzato localmente.
Il file risultante `model.onnx` può quindi essere eseguito su uno dei [tanti
acceleratori](https://onnx.ai/supported-tools.html#deployModel) che supportano il
lo standard ONNX. Ad esempio, possiamo caricare ed eseguire il modello con [ONNX
Runtime](https://onnxruntime.ai/) come segue:
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
I nomi di output richiesti (cioè `["last_hidden_state"]`) possono essere ottenuti
dando un'occhiata alla configurazione ONNX di ogni modello. Ad esempio, per
DistilBERT abbiamo:
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
```
Il processo è identico per i checkpoint TensorFlow sull'hub. Ad esempio, noi
possiamo esportare un checkpoint TensorFlow puro da [Keras
organizzazione](https://huggingface.co/keras-io) come segue:
```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```
Per esportare un modello memorizzato localmente, devi disporre dei pesi del modello
e file tokenizer memorizzati in una directory. Ad esempio, possiamo caricare e salvare un
checkpoint come segue:
<frameworkcontent>
<pt>
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
>>> # Load tokenizer and PyTorch weights form the Hub
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-pt-checkpoint")
>>> pt_model.save_pretrained("local-pt-checkpoint")
```
Una volta salvato il checkpoint, possiamo esportarlo su ONNX puntando l'argomento `--model`
del pacchetto `transformers.onnx` nella directory desiderata:
```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```
</pt>
<tf>
```python
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
>>> # Load tokenizer and TensorFlow weights from the Hub
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-tf-checkpoint")
>>> tf_model.save_pretrained("local-tf-checkpoint")
```
Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:
```bash
python -m transformers.onnx --model=local-tf-checkpoint onnx/
```
</tf>
</frameworkcontent>
### Selezione delle caratteristiche per diverse topologie di modello
Ogni configurazione già pronta viene fornita con una serie di _caratteristiche_ che ti consentono di
esportare modelli per diversi tipi di topologie o attività. Come mostrato nella tabella
di seguito, ogni caratteristica è associata a una diversa Auto Class:
| Caratteristica | Auto Class |
| ------------------------------------ | ------------------------------------ |
| `causal-lm`, `causal-lm-with-past` | `AutoModelForCausalLM` |
| `default`, `default-with-past` | `AutoModel` |
| `masked-lm` | `AutoModelForMaskedLM` |
| `question-answering` | `AutoModelForQuestionAnswering` |
| `seq2seq-lm`, `seq2seq-lm-with-past` | `AutoModelForSeq2SeqLM` |
| `sequence-classification` | `AutoModelForSequenceClassification` |
| `token-classification` | `AutoModelForTokenClassification` |
Per ciascuna configurazione, puoi trovare l'elenco delle funzionalità supportate tramite il
`FeaturesManager`. Ad esempio, per DistilBERT abbiamo:
```python
>>> from transformers.onnx.features import FeaturesManager
>>> distilbert_features = list(FeaturesManager.get_supported_features_for_model_type("distilbert").keys())
>>> print(distilbert_features)
["default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "question-answering"]
```
Puoi quindi passare una di queste funzionalità all'argomento `--feature` nel
pacchetto `transformers.onnx`. Ad esempio, per esportare un modello di classificazione del testo
possiamo scegliere un modello ottimizzato dall'Hub ed eseguire:
```bash
python -m transformers.onnx --model=distilbert-base-uncased-finetuned-sst-2-english \
--feature=sequence-classification onnx/
```
che visualizzerà i seguenti registri:
```bash
Validating ONNX model...
-[✓] ONNX model output names match reference model ({'logits'})
- Validating ONNX Model output "logits":
-[✓] (2, 2) matches (2, 2)
-[✓] all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
```
Puoi notare che in questo caso, i nomi di output del modello ottimizzato sono
`logits` invece di `last_hidden_state` che abbiamo visto con il
checkpoint `distilbert-base-uncased` precedente. Questo è previsto dal
modello ottimizato visto che ha una testa di e.
<Tip>
Le caratteristiche che hanno un suffisso `wtih-past` (ad es. `causal-lm-with-past`)
corrispondono a topologie di modello con stati nascosti precalcolati (chiave e valori
nei blocchi di attenzione) che possono essere utilizzati per la decodifica autoregressiva veloce.
</Tip>
### Esportazione di un modello per un'architettura non supportata
Se desideri esportare un modello la cui architettura non è nativamente supportata dalla
libreria, ci sono tre passaggi principali da seguire:
1. Implementare una configurazione ONNX personalizzata.
2. Esportare il modello in ONNX.
3. Convalidare gli output di PyTorch e dei modelli esportati.
In questa sezione, vedremo come DistilBERT è stato implementato per mostrare cosa è
coinvolto in ogni passaggio.
#### Implementazione di una configurazione ONNX personalizzata
Iniziamo con l'oggetto di configurazione ONNX. Forniamo tre classi
astratte da cui ereditare, a seconda del tipo di archittettura
del modello che desideri esportare:
* I modelli basati su encoder ereditano da [`~onnx.config.OnnxConfig`]
* I modelli basati su decoder ereditano da [`~onnx.config.OnnxConfigWithPast`]
* I modelli encoder-decoder ereditano da[`~onnx.config.OnnxSeq2SeqConfigWithPast`]
<Tip>
Un buon modo per implementare una configurazione ONNX personalizzata è guardare l'implementazione
esistente nel file `configuration_<model_name>.py` di un'architettura simile.
</Tip>
Poiché DistilBERT è un modello basato su encoder, la sua configurazione eredita da
`OnnxConfig`:
```python
>>> from typing import Mapping, OrderedDict
>>> from transformers.onnx import OnnxConfig
>>> class DistilBertOnnxConfig(OnnxConfig):
... @property
... def inputs(self) -> Mapping[str, Mapping[int, str]]:
... return OrderedDict(
... [
... ("input_ids", {0: "batch", 1: "sequence"}),
... ("attention_mask", {0: "batch", 1: "sequence"}),
... ]
... )
```
Ogni oggetto di configurazione deve implementare la proprietà `inputs` e restituire una
mappatura, dove ogni chiave corrisponde a un input previsto e ogni valore
indica l'asse di quell'input. Per DistilBERT, possiamo vedere che sono richiesti
due input: `input_ids` e `attention_mask`. Questi inputs hanno la stessa forma di
`(batch_size, sequence_length)` per questo motivo vediamo gli stessi assi usati nella
configurazione.
<Tip>
Puoi notare che la proprietà `inputs` per `DistilBertOnnxConfig` restituisce un
`OrdinatoDict`. Ciò garantisce che gli input corrispondano alla loro posizione
relativa all'interno del metodo `PreTrainedModel.forward()` durante il tracciamento del grafico.
Raccomandiamo di usare un `OrderedDict` per le proprietà `inputs` e `outputs`
quando si implementano configurazioni ONNX personalizzate.
</Tip>
Dopo aver implementato una configurazione ONNX, è possibile istanziarla
fornendo alla configurazione del modello base come segue:
```python
>>> from transformers import AutoConfig
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config = DistilBertOnnxConfig(config)
```
L'oggetto risultante ha diverse proprietà utili. Ad esempio è possibile visualizzare il
Set operatore ONNX che verrà utilizzato durante l'esportazione:
```python
>>> print(onnx_config.default_onnx_opset)
11
```
È inoltre possibile visualizzare gli output associati al modello come segue:
```python
>>> print(onnx_config.outputs)
OrderedDict([("last_hidden_state", {0: "batch", 1: "sequence"})])
```
Puoi notare che la proprietà degli output segue la stessa struttura degli input; esso
restituisce un `OrderedDict` di output con nome e le loro forme. La struttura di output
è legato alla scelta della funzione con cui viene inizializzata la configurazione.
Per impostazione predefinita, la configurazione ONNX viene inizializzata con la funzione 'predefinita'
che corrisponde all'esportazione di un modello caricato con la classe `AutoModel`. Se tu
desideri esportare una topologia di modello diversa, è sufficiente fornire una funzionalità diversa a
l'argomento `task` quando inizializzi la configurazione ONNX. Ad esempio, se
volevamo esportare DistilBERT con una testa di classificazione per sequenze, potremmo
usare:
```python
>>> from transformers import AutoConfig
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config_for_seq_clf = DistilBertOnnxConfig(config, task="sequence-classification")
>>> print(onnx_config_for_seq_clf.outputs)
OrderedDict([('logits', {0: 'batch'})])
```
<Tip>
Tutte le proprietà e i metodi di base associati a [`~onnx.config.OnnxConfig`] e le
altre classi di configurazione possono essere sovrascritte se necessario. Guarda
[`BartOnnxConfig`] per un esempio avanzato.
</Tip>
#### Esportazione del modello
Una volta implementata la configurazione ONNX, il passaggio successivo consiste nell'esportare il
modello. Qui possiamo usare la funzione `export()` fornita dal
pacchetto `transformers.onnx`. Questa funzione prevede la configurazione ONNX, insieme
con il modello base e il tokenizer e il percorso per salvare il file esportato:
```python
>>> from pathlib import Path
>>> from transformers.onnx import export
>>> from transformers import AutoTokenizer, AutoModel
>>> onnx_path = Path("model.onnx")
>>> model_ckpt = "distilbert-base-uncased"
>>> base_model = AutoModel.from_pretrained(model_ckpt)
>>> tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
>>> onnx_inputs, onnx_outputs = export(tokenizer, base_model, onnx_config, onnx_config.default_onnx_opset, onnx_path)
```
Gli `onnx_inputs` e `onnx_outputs` restituiti dalla funzione `export()` sono
liste di chiavi definite nelle proprietà di `input` e `output` della
configurazione. Una volta esportato il modello, puoi verificare che il modello sia ben
formato come segue:
```python
>>> import onnx
>>> onnx_model = onnx.load("model.onnx")
>>> onnx.checker.check_model(onnx_model)
```
<Tip>
Se il tuo modello è più largo di 2 GB, vedrai che molti file aggiuntivi sono
creati durante l'esportazione. Questo è _previsto_ perché ONNX utilizza [Protocol
Buffer](https://developers.google.com/protocol-buffers/) per memorizzare il modello e
questi hanno un limite di dimensione 2 GB. Vedi la [Documentazione
ONNX](https://github.com/onnx/onnx/blob/master/docs/ExternalData.md)
per istruzioni su come caricare modelli con dati esterni.
</Tip>
#### Convalida degli output del modello
Il passaggio finale consiste nel convalidare gli output dal modello di base e quello esportato
corrispondere entro una soglia di tolleranza assoluta. Qui possiamo usare la
Funzione `validate_model_outputs()` fornita dal pacchetto `transformers.onnx`
come segue:
```python
>>> from transformers.onnx import validate_model_outputs
>>> validate_model_outputs(
... onnx_config, tokenizer, base_model, onnx_path, onnx_outputs, onnx_config.atol_for_validation
... )
```
Questa funzione usa il metodo `OnnxConfig.generate_dummy_inputs()` per generare
input per il modello di base e quello esportato e la tolleranza assoluta può essere
definita nella configurazione. Generalmente troviamo una corrispondenza numerica nell'intervallo da 1e-6
a 1e-4, anche se è probabile che qualsiasi cosa inferiore a 1e-3 vada bene.
### Contribuire con una nuova configurazione a 🤗 Transformers
Stiamo cercando di espandere l'insieme di configurazioni già pronte e di accettare
contributi della community! Se vuoi contribuire con la tua aggiunta
nella libreria, dovrai:
* Implementare la configurazione ONNX nella corrispondente `configuration file
_<model_name>.py`
* Includere l'architettura del modello e le funzioni corrispondenti in [`~onnx.features.FeatureManager`]
* Aggiungere la tua architettura del modello ai test in `test_onnx_v2.py`
Scopri come stato contribuito la configurazione per [IBERT]
(https://github.com/huggingface/transformers/pull/14868/files) per
avere un'idea di cosa è coinvolto.
## TorchScript
<Tip>
Questo è l'inizio dei nostri esperimenti con TorchScript e stiamo ancora esplorando le sue capacità con
modelli con variable-input-size. È una nostra priorità e approfondiremo le nostre analisi nelle prossime versioni,
con più esempi di codici, un'implementazione più flessibile e benchmark che confrontano i codici basati su Python con quelli compilati con
TorchScript.
</Tip>
Secondo la documentazione di Pytorch: "TorchScript è un modo per creare modelli serializzabili e ottimizzabili da codice
Pytorch". I due moduli di Pytorch [JIT e TRACE](https://pytorch.org/docs/stable/jit.html) consentono allo sviluppatore di esportare
il loro modello da riutilizzare in altri programmi, come i programmi C++ orientati all'efficienza.
Abbiamo fornito un'interfaccia che consente l'esportazione di modelli 🤗 Transformers in TorchScript in modo che possano essere riutilizzati
in un ambiente diverso rispetto a un programma Python basato su Pytorch. Qui spieghiamo come esportare e utilizzare i nostri modelli utilizzando
TorchScript.
Esportare un modello richiede due cose:
- Un passaggio in avanti con input fittizzi.
- Istanziazione del modello con flag `torchscript`.
Queste necessità implicano diverse cose a cui gli sviluppatori dovrebbero prestare attenzione. Questi dettagli mostrati sotto.
### Flag TorchScript e pesi legati
Questo flag è necessario perché la maggior parte dei modelli linguistici in questo repository hanno pesi legati tra il loro
strato "Embedding" e lo strato "Decoding". TorchScript non consente l'esportazione di modelli che hanno pesi
legati, quindi è necessario prima slegare e clonare i pesi.
Ciò implica che i modelli istanziati con il flag `torchscript` hanno il loro strato `Embedding` e strato `Decoding`
separato, il che significa che non dovrebbero essere addestrati in futuro. L'allenamento de-sincronizza i due
strati, portando a risultati inaspettati.
Questo non è il caso per i modelli che non hanno una testa del modello linguistico, poiché quelli non hanno pesi legati. Questi modelli
può essere esportato in sicurezza senza il flag `torchscript`.
### Input fittizi e standard lengths
Gli input fittizzi sono usati per fare un modello passaggio in avanti . Mentre i valori degli input si propagano attraverso i strati,
Pytorch tiene traccia delle diverse operazioni eseguite su ciascun tensore. Queste operazioni registrate vengono quindi utilizzate per
creare la "traccia" del modello.
La traccia viene creata relativamente alle dimensioni degli input. È quindi vincolato dalle dimensioni dell'input
fittizio e non funzionerà per altre lunghezze di sequenza o dimensioni batch. Quando si proverà con una dimensione diversa, ci sarà errore
come:
`La dimensione espansa del tensore (3) deve corrispondere alla dimensione esistente (7) nella dimensione non singleton 2`
will be raised. Si consiglia pertanto di tracciare il modello con una dimensione di input fittizia grande almeno quanto il più grande
input che verrà fornito al modello durante l'inferenza. È possibile eseguire il padding per riempire i valori mancanti. Il modello
sarà tracciato con una grande dimensione di input, tuttavia, anche le dimensioni della diverse matrici saranno grandi,
risultando in più calcoli.
Si raccomanda di prestare attenzione al numero totale di operazioni eseguite su ciascun input e di seguire da vicino le prestazioni
durante l'esportazione di modelli di sequenza-lunghezza variabili.
### Usare TorchSscript in Python
Di seguito è riportato un esempio, che mostra come salvare, caricare modelli e come utilizzare la traccia per l'inferenza.
#### Salvare un modello
Questo frammento di codice mostra come usare TorchScript per esportare un `BertModel`. Qui il `BertModel` è istanziato secondo
una classe `BertConfig` e quindi salvato su disco con il nome del file `traced_bert.pt`
```python
from transformers import BertModel, BertTokenizer, BertConfig
import torch
enc = BertTokenizer.from_pretrained("bert-base-uncased")
# Tokenizing input text
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = enc.tokenize(text)
# Masking one of the input tokens
masked_index = 8
tokenized_text[masked_index] = "[MASK]"
indexed_tokens = enc.convert_tokens_to_ids(tokenized_text)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
# Creating a dummy input
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
dummy_input = [tokens_tensor, segments_tensors]
# Initializing the model with the torchscript flag
# Flag set to True even though it is not necessary as this model does not have an LM Head.
config = BertConfig(
vocab_size_or_config_json_file=32000,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
torchscript=True,
)
# Instantiating the model
model = BertModel(config)
# The model needs to be in evaluation mode
model.eval()
# If you are instantiating the model with *from_pretrained* you can also easily set the TorchScript flag
model = BertModel.from_pretrained("bert-base-uncased", torchscript=True)
# Creating the trace
traced_model = torch.jit.trace(model, [tokens_tensor, segments_tensors])
torch.jit.save(traced_model, "traced_bert.pt")
```
#### Caricare un modello
Questo frammento di codice mostra come caricare il `BertModel` che era stato precedentemente salvato su disco con il nome `traced_bert.pt`.
Stiamo riutilizzando il `dummy_input` precedentemente inizializzato.
```python
loaded_model = torch.jit.load("traced_bert.pt")
loaded_model.eval()
all_encoder_layers, pooled_output = loaded_model(*dummy_input)
```
#### Utilizzare un modello tracciato per l'inferenza
Usare il modello tracciato per l'inferenza è semplice come usare il suo metodo dunder `__call__`:
```python
traced_model(tokens_tensor, segments_tensors)
```
###Implementare modelli HuggingFace TorchScript su AWS utilizzando Neuron SDK
AWS ha introdotto [Amazon EC2 Inf1](https://aws.amazon.com/ec2/instance-types/inf1/)
famiglia di istanze per l'inferenza di machine learning a basso costo e ad alte prestazioni nel cloud.
Le istanze Inf1 sono alimentate dal chip AWS Inferentia, un acceleratore hardware personalizzato,
specializzato in carichi di lavoro di inferenza di deep learning.
[AWS Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/#)
è l'SDK per Inferentia che supporta il tracciamento e l'ottimizzazione dei modelli transformers per
distribuzione su Inf1. L'SDK Neuron fornisce:
1. API di facile utilizzo con una riga di modifica del codice per tracciare e ottimizzare un modello TorchScript per l'inferenza nel cloud.
2. Ottimizzazioni delle prestazioni pronte all'uso per [miglioramento dei costi-prestazioni](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/benchmark/>)
3. Supporto per i modelli di trasformatori HuggingFace costruiti con [PyTorch](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.html)
o [TensorFlow](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/tensorflow/huggingface_bert/huggingface_bert.html).
#### Implicazioni
Modelli Transformers basati su architettura [BERT (Bidirectional Encoder Representations from Transformers)](https://huggingface.co/docs/transformers/main/model_doc/bert),
o sue varianti come [distilBERT](https://huggingface.co/docs/transformers/main/model_doc/distilbert)
e [roBERTa](https://huggingface.co/docs/transformers/main/model_doc/roberta)
funzioneranno meglio su Inf1 per attività non generative come la question answering estrattive,
Classificazione della sequenza, Classificazione dei token. In alternativa, generazione di testo
le attività possono essere adattate per essere eseguite su Inf1, secondo questo [tutorial AWS Neuron MarianMT](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/transformers-marianmt.html).
Ulteriori informazioni sui modelli che possono essere convertiti fuori dagli schemi su Inferentia possono essere
trovati nella [sezione Model Architecture Fit della documentazione Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/models/models-inferentia.html#models-inferentia).
#### Dipendenze
L'utilizzo di AWS Neuron per convertire i modelli richiede le seguenti dipendenze e l'ambiente:
* A [Neuron SDK environment](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/pytorch-neuron/index.html#installation-guide),
which comes pre-configured on [AWS Deep Learning AMI](https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-launching.html).
#### Convertire un modello per AWS Neuron
Usando lo stesso script come in [Usando TorchScipt in Python](https://huggingface.co/docs/transformers/main/en/serialization#using-torchscript-in-python)
per tracciare un "BertModel", importi l'estensione del framework `torch.neuron` per accedere
i componenti di Neuron SDK tramite un'API Python.
```python
from transformers import BertModel, BertTokenizer, BertConfig
import torch
import torch.neuron
```
E modificare solo la riga di codice di traccia
Da:
```python
torch.jit.trace(model, [tokens_tensor, segments_tensors])
```
A:
```python
torch.neuron.trace(model, [token_tensor, segments_tensors])
```
Questa modifica consente a Neuron SDK di tracciare il modello e ottimizzarlo per l'esecuzione nelle istanze Inf1.
Per ulteriori informazioni sulle funzionalità, gli strumenti, i tutorial di esempi e gli ultimi aggiornamenti di AWS Neuron SDK,
consultare la [documentazione AWS NeuronSDK](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/index.html). |