File size: 25,904 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ViLT model. """

import unittest

from datasets import load_dataset
from packaging import version

from transformers import ViltConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        MODEL_MAPPING,
        ViltForImageAndTextRetrieval,
        ViltForImagesAndTextClassification,
        ViltForMaskedLM,
        ViltForQuestionAnswering,
        ViltForTokenClassification,
        ViltModel,
    )
    from transformers.models.vilt.modeling_vilt import VILT_PRETRAINED_MODEL_ARCHIVE_LIST

if is_vision_available():
    import PIL
    from PIL import Image

    from transformers import ViltProcessor


class ViltModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
        modality_type_vocab_size=2,
        add_multiple_images=False,
        num_images=-1,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.scope = scope
        self.modality_type_vocab_size = modality_type_vocab_size
        self.add_multiple_images = add_multiple_images
        self.num_images = num_images
        # we set the expected sequence length (which is used in several tests)
        # this is equal to the seq length of the text tokens + number of image patches + 1 for the CLS token
        self.expected_seq_len = self.seq_length + (self.image_size // self.patch_size) ** 2 + 1

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        if self.add_multiple_images:
            pixel_values = floats_tensor([self.batch_size, 2, self.num_channels, self.image_size, self.image_size])
        else:
            pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        if self.use_labels:
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)

        config = self.get_config()

        return (config, input_ids, token_type_ids, input_mask, pixel_values, token_labels)

    def get_config(self):
        return ViltConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
            num_labels=self.num_labels,
            modality_type_vocab_size=self.modality_type_vocab_size,
            num_images=self.num_images,
        )

    def create_and_check_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        pixel_values,
        token_labels,
    ):
        model = ViltModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, pixel_values=pixel_values)
        result = model(input_ids, token_type_ids=token_type_ids, pixel_values=pixel_values)
        result = model(input_ids, pixel_values=pixel_values)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size)
        )

    def create_and_check_for_token_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        pixel_values,
        token_labels,
    ):
        model = ViltForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, pixel_values=pixel_values)
        result = model(input_ids, token_type_ids=token_type_ids, pixel_values=pixel_values)
        result = model(input_ids, pixel_values=pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            pixel_values,
            token_labels,
        ) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
            "pixel_values": pixel_values,
        }
        return config, inputs_dict

    def prepare_pixel_values(self):
        return floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])


@require_torch
class ViltModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            ViltModel,
            ViltForQuestionAnswering,
            ViltForImageAndTextRetrieval,
            ViltForMaskedLM,
            ViltForTokenClassification,
        )
        if is_torch_available()
        else ()
    )
    pipeline_model_mapping = (
        {"feature-extraction": ViltModel, "visual-question-answering": ViltForQuestionAnswering}
        if is_torch_available()
        else {}
    )
    test_pruning = False
    test_headmasking = False
    test_torchscript = False
    model_split_percents = [0.5, 0.8, 0.9]

    # ViltForMaskedLM, ViltForQuestionAnswering and ViltForImagesAndTextClassification require special treatment
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "ViltForQuestionAnswering":
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, self.model_tester.num_labels, device=torch_device
                )
            elif model_class.__name__ in ["ViltForMaskedLM", "ViltForTokenClassification"]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
            elif model_class.__name__ == "ViltForImagesAndTextClassification":
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )

        return inputs_dict

    def setUp(self):
        self.model_tester = ViltModelTester(self)
        self.config_tester = ConfigTester(self, config_class=ViltConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)

    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

            if model_class.__name__ == "ViltForImagesAndTextClassification":
                config.modality_type_vocab_size = 3

            # ViltForImageAndTextRetrieval doesn't support training for now
            if model_class in [*get_values(MODEL_MAPPING), ViltForImageAndTextRetrieval]:
                continue

            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            for k, v in inputs.items():
                print(k, v.shape)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

            # ViltForImageAndTextRetrieval doesn't support training for now
            if (
                model_class in [*get_values(MODEL_MAPPING), ViltForImageAndTextRetrieval]
                or not model_class.supports_gradient_checkpointing
            ):
                continue

            model = model_class(config)
            model.to(torch_device)
            model.gradient_checkpointing_enable()
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    @unittest.skip(
        reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic
                            hidden states"""
    )
    def test_save_load(self):
        pass

    @unittest.skip(
        reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic
                            hidden states"""
    )
    def test_determinism(self):
        pass

    @unittest.skip(
        reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic
                            hidden states"""
    )
    def test_model_outputs_equivalence(self):
        pass

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        seq_len = getattr(self.model_tester, "expected_seq_len", None)

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            if model_class.__name__ == "ViltForImagesAndTextClassification":
                # attentions are a list of length num_images
                # each element contains the attentions of a particular image index
                self.assertEqual(len(attentions), self.model_tester.num_images)
                self.assertEqual(len(attentions[0]), self.model_tester.num_hidden_layers)
            else:
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            if model_class.__name__ == "ViltForImagesAndTextClassification":
                # attentions are a list of length num_images
                # each element contains the attentions of a particular image index
                self.assertEqual(len(attentions), self.model_tester.num_images)
                self.assertEqual(len(attentions[0]), self.model_tester.num_hidden_layers)
            else:
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            if model_class.__name__ == "ViltForImagesAndTextClassification":
                self.assertListEqual(
                    list(attentions[0][0].shape[-3:]),
                    [self.model_tester.num_attention_heads, seq_len, seq_len],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, seq_len, seq_len],
                )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            self.assertEqual(out_len + 1, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            if model_class.__name__ == "ViltForImagesAndTextClassification":
                self.assertEqual(len(self_attentions), self.model_tester.num_images)
                self.assertEqual(len(self_attentions[0]), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(self_attentions[0][0].shape[-3:]),
                    [self.model_tester.num_attention_heads, seq_len, seq_len],
                )
            else:
                self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, seq_len, seq_len],
                )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            if model_class.__name__ == "ViltForImagesAndTextClassification":
                # hidden_states are a list of length num_images
                # each element contains the hidden states of a particular image index
                self.assertEqual(len(hidden_states), self.model_tester.num_images)
                self.assertEqual(len(hidden_states[0]), expected_num_layers)
            else:
                self.assertEqual(len(hidden_states), expected_num_layers)

            seq_length = self.model_tester.expected_seq_len

            if model_class.__name__ == "ViltForImagesAndTextClassification":
                self.assertListEqual(
                    list(hidden_states[0][0].shape[-2:]),
                    [seq_length, self.model_tester.hidden_size],
                )
            else:
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [seq_length, self.model_tester.hidden_size],
                )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            print("Model class:", model_class)
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        if model_class.__name__ == "ViltForImagesAndTextClassification":
            # hidden_states are a list of length num_images
            # each element contains the hidden states of a particular image index
            hidden_states[0].retain_grad()
            attentions[0].retain_grad()
        else:
            hidden_states.retain_grad()
            attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        if model_class.__name__ == "ViltForImagesAndTextClassification":
            # hidden_states are a list of length num_images
            # each element contains the hidden states of a particular image index
            self.assertIsNotNone(hidden_states[0].grad)
            self.assertIsNotNone(attentions[0].grad)
        else:
            self.assertIsNotNone(hidden_states.grad)
            self.assertIsNotNone(attentions.grad)

    @slow
    def test_model_from_pretrained(self):
        for model_name in VILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = ViltModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


@require_torch
class ViltForImagesAndTextClassificationModelTest(ViltModelTest, unittest.TestCase):
    all_model_classes = (ViltForImagesAndTextClassification,) if is_torch_available() else ()

    def setUp(self):
        self.model_tester = ViltModelTester(self, modality_type_vocab_size=3, add_multiple_images=True, num_images=2)
        self.config_tester = ConfigTester(self, config_class=ViltConfig, hidden_size=37)

    @unittest.skip("We only test the model that takes in multiple images")
    def test_model(self):
        pass

    @unittest.skip("We only test the model that takes in multiple images")
    def test_for_token_classification(self):
        pass


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
class ViltModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_processor(self):
        return ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") if is_vision_available() else None

    @slow
    def test_inference_masked_lm(self):
        model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm").to(torch_device)

        processor = self.default_processor
        image = prepare_img()
        text = "a bunch of [MASK] laying on a [MASK]."
        inputs = processor(image, text, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size([1, 11, 30522])
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([-12.5061, -12.5123, -12.5174]).to(torch_device)
        self.assertTrue(torch.allclose(outputs.logits[0, 0, :3], expected_slice, atol=1e-4))

        # verify masked token prediction equals "cats"
        predicted_id = outputs.logits[0, 4, :].argmax(-1).item()
        assert processor.decode([predicted_id]) == "cats"

    @slow
    def test_inference_visual_question_answering(self):
        model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa").to(torch_device)

        processor = self.default_processor
        image = prepare_img()
        text = "How many cats are there?"
        inputs = processor(image, text, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 3129))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([-15.9495, -18.1472, -10.3041]).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))

        # compute loss
        vqa_labels = [[2, 3, 155, 800]]
        vqa_scores = [[1.0, 0.3, 0.3, 0.3]]
        labels = torch.zeros(1, model.config.num_labels).to(torch_device)

        for i, (labels_example, scores_example) in enumerate(zip(vqa_labels, vqa_scores)):
            for l, s in zip(labels_example, scores_example):
                labels[i, l] = s

        # forward pass
        outputs = model(**inputs, labels=labels)

        # verify we have a positive loss
        self.assertTrue(outputs.loss > 0)

    @slow
    def test_inference_natural_language_visual_reasoning(self):
        model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2").to(
            torch_device
        )

        processor = self.default_processor

        dataset = load_dataset("hf-internal-testing/fixtures_nlvr2", split="test")
        image1 = Image.open(dataset[0]["file"]).convert("RGB")
        image2 = Image.open(dataset[1]["file"]).convert("RGB")

        text = (
            "The left image contains twice the number of dogs as the right image, and at least two dogs in total are"
            " standing."
        )
        encoding_1 = processor(image1, text, return_tensors="pt")
        encoding_2 = processor(image2, text, return_tensors="pt")

        pixel_values = torch.stack([encoding_1.pixel_values, encoding_2.pixel_values], dim=1)

        # forward pass
        outputs = model(
            input_ids=encoding_1.input_ids.to(torch_device),
            pixel_values=pixel_values.to(torch_device),
        )

        # verify the logits
        expected_shape = torch.Size([1, 2])
        self.assertEqual(outputs.logits.shape, expected_shape)

        is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0")

        if is_pillow_less_than_9:
            expected_slice = torch.tensor(
                [-2.4013, 2.9342],
                device=torch_device,
            )
        else:
            expected_slice = torch.tensor(
                [-2.3713, 2.9168],
                device=torch_device,
            )

        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))