Spaces:
Paused
Paused
File size: 39,028 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Hubert model. """
import math
import os
import pickle
import tempfile
import unittest
import pytest
from transformers import HubertConfig, is_torch_available
from transformers.testing_utils import require_soundfile, require_torch, slow, torch_device
from transformers.utils import is_torch_fx_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
HubertForCTC,
HubertForSequenceClassification,
HubertModel,
Wav2Vec2FeatureExtractor,
Wav2Vec2Processor,
)
from transformers.models.hubert.modeling_hubert import _compute_mask_indices
if is_torch_fx_available():
from transformers.utils.fx import symbolic_trace
class HubertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=1024, # speech is longer
is_training=False,
hidden_size=16,
feat_extract_norm="group",
feat_extract_dropout=0.0,
feat_extract_activation="gelu",
conv_dim=(32, 32, 32),
conv_stride=(4, 4, 4),
conv_kernel=(8, 8, 8),
conv_bias=False,
num_conv_pos_embeddings=16,
num_conv_pos_embedding_groups=2,
num_hidden_layers=2,
num_attention_heads=2,
hidden_dropout_prob=0.1, # this is most likely not correctly set yet
intermediate_size=20,
layer_norm_eps=1e-5,
hidden_act="gelu",
initializer_range=0.02,
vocab_size=32,
do_stable_layer_norm=False,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_dropout = feat_extract_dropout
self.feat_extract_activation = feat_extract_activation
self.conv_dim = conv_dim
self.conv_stride = conv_stride
self.conv_kernel = conv_kernel
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.intermediate_size = intermediate_size
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.scope = scope
output_seq_length = self.seq_length
for kernel, stride in zip(self.conv_kernel, self.conv_stride):
output_seq_length = (output_seq_length - (kernel - 1)) / stride
self.output_seq_length = int(math.ceil(output_seq_length))
self.encoder_seq_length = self.output_seq_length
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
config = self.get_config()
return config, input_values, attention_mask
def get_config(self):
return HubertConfig(
hidden_size=self.hidden_size,
feat_extract_norm=self.feat_extract_norm,
feat_extract_dropout=self.feat_extract_dropout,
feat_extract_activation=self.feat_extract_activation,
conv_dim=self.conv_dim,
conv_stride=self.conv_stride,
conv_kernel=self.conv_kernel,
conv_bias=self.conv_bias,
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
hidden_dropout_prob=self.hidden_dropout_prob,
intermediate_size=self.intermediate_size,
layer_norm_eps=self.layer_norm_eps,
hidden_act=self.hidden_act,
initializer_range=self.initializer_range,
vocab_size=self.vocab_size,
do_stable_layer_norm=self.do_stable_layer_norm,
)
def create_and_check_model(self, config, input_values, attention_mask):
model = HubertModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
)
def create_and_check_batch_inference(self, config, input_values, *args):
# test does not pass for models making use of `group_norm`
# check: https://github.com/pytorch/fairseq/issues/3227
model = HubertModel(config=config)
model.to(torch_device)
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0.0
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
for i in range(input_values.shape[0]):
input_slice = input_values[i : i + 1, : input_lengths[i]]
output = model(input_slice).last_hidden_state
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
def check_ctc_loss(self, config, input_values, *args):
model = HubertForCTC(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
model.config.ctc_loss_reduction = "sum"
sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
model.config.ctc_loss_reduction = "mean"
mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
self.parent.assertTrue(isinstance(sum_loss, float))
self.parent.assertTrue(isinstance(mean_loss, float))
def check_seq_classifier_loss(self, config, input_values, *args):
model = HubertForSequenceClassification(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
unmasked_loss = model(input_values, labels=labels).loss.item()
self.parent.assertTrue(isinstance(masked_loss, float))
self.parent.assertTrue(isinstance(unmasked_loss, float))
self.parent.assertTrue(masked_loss != unmasked_loss)
def check_ctc_training(self, config, input_values, *args):
config.ctc_zero_infinity = True
model = HubertForCTC(config=config)
model.to(torch_device)
model.train()
# freeze feature encoder
model.freeze_feature_encoder()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
if max_length_labels[i] < labels.shape[-1]:
# it's important that we make sure that target lengths are at least
# one shorter than logit lengths to prevent -inf
labels[i, max_length_labels[i] - 1 :] = -100
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_seq_classifier_training(self, config, input_values, *args):
config.ctc_zero_infinity = True
model = HubertForSequenceClassification(config=config)
model.to(torch_device)
model.train()
# freeze everything but the classification head
model.freeze_base_model()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_labels_out_of_vocab(self, config, input_values, *args):
model = HubertForCTC(config)
model.to(torch_device)
model.train()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)
with pytest.raises(ValueError):
model(input_values, labels=labels)
def prepare_config_and_inputs_for_common(self):
config, input_values, attention_mask = self.prepare_config_and_inputs()
inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class HubertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (HubertForCTC, HubertForSequenceClassification, HubertModel) if is_torch_available() else ()
pipeline_model_mapping = (
{
"audio-classification": HubertForSequenceClassification,
"automatic-speech-recognition": HubertForCTC,
"feature-extraction": HubertModel,
}
if is_torch_available()
else {}
)
fx_compatible = True
test_pruning = False
test_headmasking = False
def setUp(self):
self.model_tester = HubertModelTester(self)
self.config_tester = ConfigTester(self, config_class=HubertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
def test_seq_classifier_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_loss(*config_and_inputs)
def test_ctc_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_training(*config_and_inputs)
def test_seq_classifier_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_training(*config_and_inputs)
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
# Hubert has no inputs_embeds
def test_inputs_embeds(self):
pass
# `input_ids` is renamed to `input_values`
def test_forward_signature(self):
pass
# Hubert cannot resize token embeddings
# since it has no tokens embeddings
def test_resize_tokens_embeddings(self):
pass
# Hubert has no inputs_embeds
# and thus the `get_input_embeddings` fn
# is not implemented
def test_model_common_attributes(self):
pass
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
# set layer drop to 0
model.config.layerdrop = 0.0
input_values = inputs_dict["input_values"]
input_lengths = torch.tensor(
[input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
)
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
inputs_dict["labels"] = labels
outputs = model(**inputs_dict)
output = outputs[0]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"masked_spec_embed",
"quantizer.weight_proj.weight",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# Hubert cannot be TorchScripted because of torch.nn.utils.weight_norm
def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
if not is_torch_fx_available() or not self.fx_compatible:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)
try:
if model.config.is_encoder_decoder:
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
labels = inputs.get("labels", None)
input_names = [
"attention_mask",
"decoder_attention_mask",
"decoder_input_ids",
"input_features",
"input_ids",
"input_values",
]
if labels is not None:
input_names.append("labels")
filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
input_names = list(filtered_inputs.keys())
model_output = model(**filtered_inputs)
traced_model = symbolic_trace(model, input_names)
traced_output = traced_model(**filtered_inputs)
else:
input_names = [
"attention_mask",
"bbox",
"input_features",
"input_ids",
"input_values",
"pixel_values",
"token_type_ids",
"visual_feats",
"visual_pos",
]
labels = inputs.get("labels", None)
start_positions = inputs.get("start_positions", None)
end_positions = inputs.get("end_positions", None)
if labels is not None:
input_names.append("labels")
if start_positions is not None:
input_names.append("start_positions")
if end_positions is not None:
input_names.append("end_positions")
filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
input_names = list(filtered_inputs.keys())
model_output = model(**filtered_inputs)
traced_model = symbolic_trace(model, input_names)
traced_output = traced_model(**filtered_inputs)
except Exception as e:
self.fail(f"Couldn't trace module: {e}")
def flatten_output(output):
flatten = []
for x in output:
if isinstance(x, (tuple, list)):
flatten += flatten_output(x)
elif not isinstance(x, torch.Tensor):
continue
else:
flatten.append(x)
return flatten
model_output = flatten_output(model_output)
traced_output = flatten_output(traced_output)
num_outputs = len(model_output)
for i in range(num_outputs):
self.assertTrue(
torch.allclose(model_output[i], traced_output[i]),
f"traced {i}th output doesn't match model {i}th output for {model_class}",
)
# Test that the model can be serialized and restored properly
with tempfile.TemporaryDirectory() as tmp_dir_name:
pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
try:
with open(pkl_file_name, "wb") as f:
pickle.dump(traced_model, f)
with open(pkl_file_name, "rb") as f:
loaded = pickle.load(f)
except Exception as e:
self.fail(f"Couldn't serialize / deserialize the traced model: {e}")
loaded_output = loaded(**filtered_inputs)
loaded_output = flatten_output(loaded_output)
for i in range(num_outputs):
self.assertTrue(
torch.allclose(model_output[i], loaded_output[i]),
f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3)
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow
def test_model_from_pretrained(self):
model = HubertModel.from_pretrained("facebook/hubert-base-ls960")
self.assertIsNotNone(model)
@require_torch
class HubertRobustModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (HubertForCTC, HubertForSequenceClassification, HubertModel) if is_torch_available() else ()
test_pruning = False
test_headmasking = False
def setUp(self):
self.model_tester = HubertModelTester(
self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True
)
self.config_tester = ConfigTester(self, config_class=HubertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_batched_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_batch_inference(*config_and_inputs)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
def test_seq_classifier_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_loss(*config_and_inputs)
def test_ctc_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_training(*config_and_inputs)
def test_seq_classifier_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_training(*config_and_inputs)
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
# Hubert has no inputs_embeds
def test_inputs_embeds(self):
pass
# `input_ids` is renamed to `input_values`
def test_forward_signature(self):
pass
# Hubert cannot resize token embeddings
# since it has no tokens embeddings
def test_resize_tokens_embeddings(self):
pass
# Hubert has no inputs_embeds
# and thus the `get_input_embeddings` fn
# is not implemented
def test_model_common_attributes(self):
pass
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
# set layer drop to 0
model.config.layerdrop = 0.0
input_values = inputs_dict["input_values"]
input_lengths = torch.tensor(
[input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
)
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
inputs_dict["labels"] = labels
outputs = model(**inputs_dict)
output = outputs[0]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"masked_spec_embed",
"quantizer.weight_proj.weight",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3)
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow
def test_model_from_pretrained(self):
model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
self.assertIsNotNone(model)
@require_torch
class HubertUtilsTest(unittest.TestCase):
def test_compute_mask_indices(self):
batch_size = 4
sequence_length = 60
mask_prob = 0.5
mask_length = 1
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
mask = torch.from_numpy(mask).to(torch_device)
self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])
def test_compute_mask_indices_overlap(self):
batch_size = 4
sequence_length = 80
mask_prob = 0.5
mask_length = 4
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
mask = torch.from_numpy(mask).to(torch_device)
# because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
for batch_sum in mask.sum(axis=-1):
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
@require_torch
@require_soundfile
@slow
class HubertModelIntegrationTest(unittest.TestCase):
def _load_datasamples(self, num_samples):
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").filter(
lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
)[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def _load_superb(self, task, num_samples):
from datasets import load_dataset
ds = load_dataset("anton-l/superb_dummy", task, split="test")
return ds[:num_samples]
def test_inference_ctc_batched(self):
model = HubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft", torch_dtype=torch.float16).to(
torch_device
)
processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft", do_lower_case=True)
input_speech = self._load_datasamples(2)
inputs = processor(input_speech, return_tensors="pt", padding=True)
input_values = inputs.input_values.half().to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist",
"sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
def test_inference_keyword_spotting(self):
model = HubertForSequenceClassification.from_pretrained(
"superb/hubert-base-superb-ks", torch_dtype=torch.float16
).to(torch_device)
processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ks")
input_data = self._load_superb("ks", 4)
inputs = processor(input_data["speech"], return_tensors="pt", padding=True)
input_values = inputs.input_values.half().to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
with torch.no_grad():
outputs = model(input_values, attention_mask=attention_mask)
predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)
expected_labels = [2, 6, 10, 9]
# s3prl logits for the same batch
expected_logits = torch.tensor([7.6692, 17.7795, 11.1562, 11.8232], dtype=torch.float16, device=torch_device)
self.assertListEqual(predicted_ids.tolist(), expected_labels)
self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=3e-2))
def test_inference_intent_classification(self):
model = HubertForSequenceClassification.from_pretrained(
"superb/hubert-base-superb-ic", torch_dtype=torch.float16
).to(torch_device)
processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ic")
input_data = self._load_superb("ic", 4)
inputs = processor(input_data["speech"], return_tensors="pt", padding=True)
input_values = inputs.input_values.half().to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
with torch.no_grad():
outputs = model(input_values, attention_mask=attention_mask)
predicted_logits_action, predicted_ids_action = torch.max(outputs.logits[:, :6], dim=-1)
predicted_logits_object, predicted_ids_object = torch.max(outputs.logits[:, 6:20], dim=-1)
predicted_logits_location, predicted_ids_location = torch.max(outputs.logits[:, 20:24], dim=-1)
expected_labels_action = [1, 0, 4, 3]
expected_logits_action = torch.tensor(
[5.9052, 12.5865, 4.4840, 10.0240], dtype=torch.float16, device=torch_device
)
expected_labels_object = [1, 10, 3, 4]
expected_logits_object = torch.tensor(
[5.5316, 11.7946, 8.1672, 23.2415], dtype=torch.float16, device=torch_device
)
expected_labels_location = [0, 0, 0, 1]
expected_logits_location = torch.tensor(
[5.2053, 8.9577, 10.0447, 8.1481], dtype=torch.float16, device=torch_device
)
self.assertListEqual(predicted_ids_action.tolist(), expected_labels_action)
self.assertListEqual(predicted_ids_object.tolist(), expected_labels_object)
self.assertListEqual(predicted_ids_location.tolist(), expected_labels_location)
# TODO: lower the tolerance after merging the padding fix https://github.com/pytorch/fairseq/pull/3572
self.assertTrue(torch.allclose(predicted_logits_action, expected_logits_action, atol=3e-1))
self.assertTrue(torch.allclose(predicted_logits_object, expected_logits_object, atol=3e-1))
self.assertTrue(torch.allclose(predicted_logits_location, expected_logits_location, atol=3e-1))
def test_inference_speaker_identification(self):
model = HubertForSequenceClassification.from_pretrained(
"superb/hubert-base-superb-sid", torch_dtype=torch.float16
).to(torch_device)
processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-sid")
input_data = self._load_superb("si", 4)
output_logits = []
with torch.no_grad():
for example in input_data["speech"]:
input = processor(example, return_tensors="pt", padding=True)
output = model(input.input_values.half().to(torch_device), attention_mask=None)
output_logits.append(output.logits[0])
output_logits = torch.stack(output_logits)
predicted_logits, predicted_ids = torch.max(output_logits, dim=-1)
expected_labels = [5, 1, 1, 3]
# s3prl logits for the same batch
expected_logits = torch.tensor(
[78231.5547, 123166.6094, 122785.4141, 84851.2969], dtype=torch.float16, device=torch_device
)
self.assertListEqual(predicted_ids.tolist(), expected_labels)
# TODO: lower the tolerance after merging the padding fix https://github.com/pytorch/fairseq/pull/3572
self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=10))
def test_inference_emotion_recognition(self):
model = HubertForSequenceClassification.from_pretrained(
"superb/hubert-base-superb-er", torch_dtype=torch.float16
).to(torch_device)
processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-er")
input_data = self._load_superb("er", 4)
inputs = processor(input_data["speech"], return_tensors="pt", padding=True)
input_values = inputs.input_values.half().to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
with torch.no_grad():
outputs = model(input_values, attention_mask=attention_mask)
predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)
expected_labels = [1, 1, 2, 2]
# s3prl logits for the same batch
expected_logits = torch.tensor([2.8384, 2.3389, 3.8564, 4.5558], dtype=torch.float16, device=torch_device)
self.assertListEqual(predicted_ids.tolist(), expected_labels)
# TODO: lower the tolerance after merging the padding fix https://github.com/pytorch/fairseq/pull/3572
self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-1))
def test_inference_distilhubert(self):
model = HubertModel.from_pretrained("ntu-spml/distilhubert").to(torch_device)
processor = Wav2Vec2FeatureExtractor.from_pretrained("ntu-spml/distilhubert")
# TODO: can't test on batched inputs due to incompatible padding https://github.com/pytorch/fairseq/pull/3572
input_speech = self._load_datasamples(1)
inputs = processor(input_speech, return_tensors="pt", padding=True)
input_values = inputs.input_values.to(torch_device)
with torch.no_grad():
outputs = model(input_values).last_hidden_state
# expected outputs taken from the original SEW implementation
expected_outputs_first = torch.tensor(
[
[
[-0.3505, 0.1167, 0.0608, 0.1294],
[-0.3085, 0.0481, 0.1106, 0.0955],
[-0.3107, -0.0391, 0.0739, 0.1360],
[-0.2385, -0.1795, -0.0928, 0.2389],
]
],
device=torch_device,
)
expected_outputs_last = torch.tensor(
[
[
[-0.0732, 0.0255, 0.0529, -0.1372],
[-0.0812, 0.1259, 0.0564, -0.0438],
[-0.0054, 0.0758, -0.0002, -0.1617],
[0.0133, -0.0320, -0.0687, 0.0062],
]
],
device=torch_device,
)
expected_output_sum = -3776.0730
self.assertTrue(torch.allclose(outputs[:, :4, :4], expected_outputs_first, atol=5e-3))
self.assertTrue(torch.allclose(outputs[:, -4:, -4:], expected_outputs_last, atol=5e-3))
self.assertTrue(abs(outputs.sum() - expected_output_sum) < 0.1)
|