File size: 4,024 Bytes
c25e2cc 3cdacdf 6255790 5e25b83 6255790 c25e2cc 6255790 5e25b83 f55706c 5e25b83 6255790 5e25b83 6255790 5e25b83 6255790 5e25b83 6255790 5e25b83 6255790 5e25b83 6255790 5e25b83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
import torch
import requests
from io import BytesIO
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from utils import *
from inversion_utils import *
from modified_pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
from torch import autocast, inference_mode
def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):
# inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf,
# based on the code in https://github.com/inbarhub/DDPM_inversion
# returns wt, zs, wts:
# wt - inverted latent
# wts - intermediate inverted latents
# zs - noise maps
sd_pipe.scheduler.set_timesteps(num_diffusion_steps)
# vae encode image
with autocast("cuda"), inference_mode():
w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()
# find Zs and wts - forward process
wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps)
return wt, zs, wts
def sample(wt, zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):
# reverse process (via Zs and wT)
w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:])
# vae decode image
with autocast("cuda"), inference_mode():
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
if x0_dec.dim()<4:
x0_dec = x0_dec[None,:,:,:]
img = image_grid(x0_dec)
return img
# load pipelines
sd_model_id = "runwayml/stable-diffusion-v1-5"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sd_pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
def edit(input_image, input_image_prompt, target_prompt, edit_prompt,
guidance_scale=15, skip=36, num_diffusion_steps=100,
negative_guidance = False):
offsets=(0,0,0,0)
x0 = load_512(input_image, *offsets, device)
# invert
wt, zs, wts = invert(x0 =x0 , prompt_src=input_image_prompt, num_diffusion_steps=num_diffusion_steps)
latnets = wts[skip].expand(1, -1, -1, -1)
eta = 1
#pure DDPM output
pure_ddpm_out = sample(wt, zs, wts, prompt_tar=target_prompt,
cfg_scale_tar=guidance_scale, skip=skip,
eta = eta)
editing_args = dict(
editing_prompt = [edit_prompt],
reverse_editing_direction = [negative_guidance],
edit_warmup_steps=[5],
edit_guidance_scale=[8],
edit_threshold=[.93],
edit_momentum_scale=0.5,
edit_mom_beta=0.6
)
sega_out = sem_pipe(prompt=target_prompt,eta=eta, latents=latnets,
num_images_per_prompt=1,
guidance_scale=edit_guidance_scale,
num_inference_steps=num_diffusion_steps_pure_ddpm,
use_ddpm=True, wts=wts, zs=zs[skip:], **editing_args)
return pure_ddpm_out,sega_out.images[0]
# See the gradio docs for the types of inputs and outputs available
inputs = [
gr.Image(label="input image", shape=(512, 512)),
gr.Textbox(label="input prompt"),
gr.Textbox(label="target prompt"),
gr.Textbox(label="SEGA edit prompt"),
gr.Slider(label="guidance scale", minimum=7, maximum=18, value=15),
gr.Slider(label="skip", minimum=0, maximum=40, value=36),
gr.Slider(label="num diffusion steps", minimum=0, maximum=300, value=100),
gr.Checkbox(label="SEGA negative_guidance"),
]
outputs = [gr.Image(label="DDPM"),gr.Image(label="DDPM+SEGA")]
# And the minimal interface
demo = gr.Interface(
fn=edit,
inputs=inputs,
outputs=outputs,
)
demo.launch() # debug=True allows you to see errors and output in Colab |