File size: 8,851 Bytes
d661b19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from my.registry import Registry
VOXRF_REGISTRY = Registry("VoxRF")
def to_grid_samp_coords(xyz_sampled, aabb):
# output range is [-1, 1]
aabbSize = aabb[1] - aabb[0]
return (xyz_sampled - aabb[0]) / aabbSize * 2 - 1
def add_non_state_tsr(nn_module, key, val):
# tsr added here does not appear in module's state_dict;
nn_module.register_buffer(key, val, persistent=False)
@VOXRF_REGISTRY.register()
class VoxRF(nn.Module):
def __init__(
self, aabb, grid_size, step_ratio=0.5,
density_shift=-10, ray_march_weight_thres=0.0001, c=3,
blend_bg_texture=True, bg_texture_hw=64
):
assert aabb.shape == (2, 3)
xyz = grid_size
del grid_size
super().__init__()
add_non_state_tsr(self, "aabb", torch.tensor(aabb, dtype=torch.float32))
add_non_state_tsr(self, "grid_size", torch.LongTensor(xyz))
self.density_shift = density_shift
self.ray_march_weight_thres = ray_march_weight_thres
self.step_ratio = step_ratio
zyx = xyz[::-1]
self.density = torch.nn.Parameter(
torch.zeros((1, 1, *zyx))
)
self.color = torch.nn.Parameter(
torch.randn((1, c, *zyx))
)
self.blend_bg_texture = blend_bg_texture
self.bg = torch.nn.Parameter(
torch.randn((1, c, bg_texture_hw, bg_texture_hw))
)
self.c = c
self.alphaMask = None
self.feats2color = lambda feats: torch.sigmoid(feats)
self.d_scale = torch.nn.Parameter(torch.tensor(0.0))
@property
def device(self):
return self.density.device
def compute_density_feats(self, xyz_sampled):
xyz_sampled = to_grid_samp_coords(xyz_sampled, self.aabb)
n = xyz_sampled.shape[0]
xyz_sampled = xyz_sampled.reshape(1, n, 1, 1, 3)
σ = F.grid_sample(self.density, xyz_sampled).view(n)
# We notice that DreamFusion also uses an exp scaling on densities.
# The technique here is developed BEFORE DreamFusion came out,
# and forms part of our upcoming technical report discussing invariant
# scaling for volume rendering. The reseach was presented to our
# funding agency (TRI) on Aug. 25th, and discussed with a few researcher friends
# during the period.
σ = σ * torch.exp(self.d_scale)
σ = F.softplus(σ + self.density_shift)
return σ
def compute_app_feats(self, xyz_sampled):
xyz_sampled = to_grid_samp_coords(xyz_sampled, self.aabb)
n = xyz_sampled.shape[0]
xyz_sampled = xyz_sampled.reshape(1, n, 1, 1, 3)
feats = F.grid_sample(self.color, xyz_sampled).view(self.c, n)
feats = feats.T
return feats
def compute_bg(self, uv):
n = uv.shape[0]
uv = uv.reshape(1, n, 1, 2)
feats = F.grid_sample(self.bg, uv).view(self.c, n)
feats = feats.T
return feats
def get_per_voxel_length(self):
aabb_size = self.aabb[1] - self.aabb[0]
# NOTE I am not -1 on grid_size here;
# I interpret a voxel as a square and val sits at the center; like pixel
# this is consistent with align_corners=False
vox_xyz_length = aabb_size / self.grid_size
return vox_xyz_length
def get_num_samples(self, max_size=None):
# funny way to set step size; whatever
unit = torch.mean(self.get_per_voxel_length())
step_size = unit * self.step_ratio
step_size = step_size.item() # get the float
if max_size is None:
aabb_size = self.aabb[1] - self.aabb[0]
aabb_diag = torch.norm(aabb_size)
max_size = aabb_diag
num_samples = int((max_size / step_size).item()) + 1
return num_samples, step_size
@torch.no_grad()
def resample(self, target_xyz: list):
zyx = target_xyz[::-1]
self.density = self._resamp_param(self.density, zyx)
self.color = self._resamp_param(self.color, zyx)
target_xyz = torch.LongTensor(target_xyz).to(self.aabb.device)
add_non_state_tsr(self, "grid_size", target_xyz)
@staticmethod
def _resamp_param(param, target_size):
return torch.nn.Parameter(F.interpolate(
param.data, size=target_size, mode="trilinear"
))
@torch.no_grad()
def compute_volume_alpha(self):
xyz = self.grid_size.tolist()
unit_xyz = self.get_per_voxel_length()
xs, ys, zs = torch.meshgrid(
*[torch.arange(nd) for nd in xyz], indexing="ij"
)
pts = torch.stack([xs, ys, zs], dim=-1).to(unit_xyz.device) # [nx, ny, nz, 3]
pts = self.aabb[0] + (pts + 0.5) * unit_xyz
pts = pts.reshape(-1, 3)
# could potentially filter with alpha mask itself if exists
σ = self.compute_density_feats(pts)
d = torch.mean(unit_xyz)
α = 1 - torch.exp(-σ * d)
α = rearrange(α.view(xyz), "x y z -> 1 1 z y x")
α = α.contiguous()
return α
@torch.no_grad()
def make_alpha_mask(self):
α = self.compute_volume_alpha()
ks = 3
α = F.max_pool3d(α, kernel_size=ks, padding=ks // 2, stride=1)
α = (α > 0.08).float()
vol_mask = AlphaMask(self.aabb, α)
self.alphaMask = vol_mask
def state_dict(self, *args, **kwargs):
state = super().state_dict(*args, **kwargs)
if self.alphaMask is not None:
state['alpha_mask'] = self.alphaMask.export_state()
return state
def load_state_dict(self, state_dict):
if 'alpha_mask' in state_dict.keys():
state = state_dict.pop("alpha_mask")
self.alphaMask = AlphaMask.from_state(state)
return super().load_state_dict(state_dict, strict=True)
@VOXRF_REGISTRY.register()
class V_SJC(VoxRF):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# rendering color in [-1, 1] range, since score models all operate on centered img
self.feats2color = lambda feats: torch.sigmoid(feats) * 2 - 1
def opt_params(self):
groups = []
for name, param in self.named_parameters():
# print(f"{name} {param.shape}")
grp = {"params": param}
if name in ["bg"]:
grp["lr"] = 0.0001
if name in ["density"]:
# grp["lr"] = 0.
pass
groups.append(grp)
return groups
def annealed_opt_params(self, base_lr, σ):
groups = []
for name, param in self.named_parameters():
# print(f"{name} {param.shape}")
grp = {"params": param, "lr": base_lr * σ}
if name in ["density"]:
grp["lr"] = base_lr * σ
if name in ["d_scale"]:
grp["lr"] = 0.
if name in ["color"]:
grp["lr"] = base_lr * σ
if name in ["bg"]:
grp["lr"] = 0.01
groups.append(grp)
return groups
@VOXRF_REGISTRY.register()
class V_SD(V_SJC):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# rendering in feature space; no sigmoid thresholding
self.feats2color = lambda feats: feats
class AlphaMask(nn.Module):
def __init__(self, aabb, alphas):
super().__init__()
zyx = list(alphas.shape[-3:])
add_non_state_tsr(self, "alphas", alphas.view(1, 1, *zyx))
xyz = zyx[::-1]
add_non_state_tsr(self, "grid_size", torch.LongTensor(xyz))
add_non_state_tsr(self, "aabb", aabb)
def sample_alpha(self, xyz_pts):
xyz_pts = to_grid_samp_coords(xyz_pts, self.aabb)
xyz_pts = xyz_pts.view(1, -1, 1, 1, 3)
α = F.grid_sample(self.alphas, xyz_pts).view(-1)
return α
def export_state(self):
state = {}
alphas = self.alphas.bool().cpu().numpy()
state['shape'] = alphas.shape
state['mask'] = np.packbits(alphas.reshape(-1))
state['aabb'] = self.aabb.cpu()
return state
@classmethod
def from_state(cls, state):
shape = state['shape']
mask = state['mask']
aabb = state['aabb']
length = np.prod(shape)
alphas = torch.from_numpy(
np.unpackbits(mask)[:length].reshape(shape)
)
amask = cls(aabb, alphas.float())
return amask
def test():
device = torch.device("cuda:1")
aabb = 1.5 * np.array([
[-1, -1, -1],
[1, 1, 1]
])
model = VoxRF(aabb, [10, 20, 30])
model.to(device)
print(model.density.shape)
print(model.grid_size)
return
if __name__ == "__main__":
test()
|