Spaces:
ahadi
/
Build error

File size: 7,861 Bytes
d661b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import numpy as np
import torch
from my3d import unproject


def subpixel_rays_from_img(H, W, K, c2w_pose, normalize_dir=True, f=8):
    assert c2w_pose[3, 3] == 1.
    H, W = H * f, W * f
    n = H * W
    ys, xs = np.meshgrid(range(H), range(W), indexing="ij")
    xy_coords = np.stack([xs, ys], axis=-1).reshape(n, 2)

    top_left = np.array([-0.5, -0.5]) + 1 / (2 * f)
    xy_coords = top_left + xy_coords / f

    ro = c2w_pose[:, -1]
    pts = unproject(K, xy_coords, depth=1)
    pts = pts @ c2w_pose.T
    rd = pts - ro
    rd = rd[:, :3]
    if normalize_dir:
        rd = rd / np.linalg.norm(rd, axis=-1, keepdims=True)
    ro = np.tile(ro[:3], (n, 1))
    return ro, rd


def rays_from_img(H, W, K, c2w_pose, normalize_dir=True):
    assert c2w_pose[3, 3] == 1.
    n = H * W
    ys, xs = np.meshgrid(range(H), range(W), indexing="ij")
    xy_coords = np.stack([xs, ys], axis=-1).reshape(n, 2)

    ro = c2w_pose[:, -1]
    pts = unproject(K, xy_coords, depth=1)
    pts = pts @ c2w_pose.T
    rd = pts - ro  # equivalently can subtract [0,0,0,1] before pose transform
    rd = rd[:, :3]
    if normalize_dir:
        rd = rd / np.linalg.norm(rd, axis=-1, keepdims=True)
    ro = np.tile(ro[:3], (n, 1))
    return ro, rd


def ray_box_intersect(ro, rd, aabb):
    """
    Intersection of ray with axis-aligned bounding box
    This routine works for arbitrary dimensions; commonly d = 2 or 3
    only works for numpy, not torch (which has slightly diff api for min, max, and clone)

    Args:
        ro: [n, d] ray origin
        rd: [n, d] ray direction (assumed to be already normalized;
            if not still fine, meaning of t as time of flight holds true)
        aabb: [d, 2] bbox bound on each dim
    Return:
        is_intersect: [n,] of bool, whether the particular ray intersects the bbox
        t_min: [n,] ray entrance time
        t_max: [n,] ray exit time
    """
    n = ro.shape[0]
    d = aabb.shape[0]
    assert aabb.shape == (d, 2)
    assert ro.shape == (n, d) and rd.shape == (n, d)

    rd = rd.copy()
    rd[rd == 0] = 1e-6  # avoid div overflow; logically safe to give it big t

    ro = ro.reshape(n, d, 1)
    rd = rd.reshape(n, d, 1)
    ts = (aabb - ro) / rd  # [n, d, 2]
    t_min = ts.min(-1).max(-1)  # [n,] last of entrance
    t_max = ts.max(-1).min(-1)  # [n,] first of exit
    is_intersect = t_min < t_max

    return is_intersect, t_min, t_max


def as_torch_tsrs(device, *args):
    ret = []
    for elem in args:
        target_dtype = torch.float32 if np.issubdtype(elem.dtype, np.floating) else None
        ret.append(
            torch.as_tensor(elem, dtype=target_dtype, device=device)
        )
    return ret


def group_mask_filter(mask, *items):
    return [elem[mask] for elem in items]


def mask_back_fill(tsr, N, inds, base_value=1.0):
    shape = [N, *tsr.shape[1:]]
    canvas = base_value * np.ones_like(tsr, shape=shape)
    canvas[inds] = tsr
    return canvas


def render_one_view(model, aabb, H, W, K, pose):
    N = H * W
    bs = max(W * 5, 4096)  # render 5 rows; original batch size 4096, now 4000;

    ro, rd = rays_from_img(H, W, K, pose)
    ro, rd, t_min, t_max, intsct_inds = scene_box_filter(ro, rd, aabb)
    n = len(ro)
    # print(f"{n} vs {N}")  # n can be smaller than N since some rays do not intsct aabb

    # n = n // 1  # actual number of rays to render; only needed for fast debugging

    dev = model.device
    ro, rd, t_min, t_max = as_torch_tsrs(dev, ro, rd, t_min, t_max)
    rgbs = torch.zeros(n, 3, device=dev)
    depth = torch.zeros(n, 1, device=dev)

    with torch.no_grad():
        for i in range(int(np.ceil(n / bs))):
            s = i * bs
            e = min(n, s + bs)
            _rgbs, _depth, _ = render_ray_bundle(
                model, ro[s:e], rd[s:e], t_min[s:e], t_max[s:e]
            )
            rgbs[s:e] = _rgbs
            depth[s:e] = _depth

    rgbs, depth = rgbs.cpu().numpy(), depth.cpu().numpy()

    base_color = 1.0  # empty region needs to be white
    rgbs = mask_back_fill(rgbs, N, intsct_inds, base_color).reshape(H, W, 3)
    depth = mask_back_fill(depth, N, intsct_inds, base_color).reshape(H, W)
    return rgbs, depth


def scene_box_filter(ro, rd, aabb):
    N = len(ro)

    _, t_min, t_max = ray_box_intersect(ro, rd, aabb)
    # do not render what's behind the ray origin
    t_min, t_max = np.maximum(t_min, 0), np.maximum(t_max, 0)
    # can test intersect logic by reducing the focal length
    is_intsct = t_min < t_max
    ro, rd, t_min, t_max = group_mask_filter(is_intsct, ro, rd, t_min, t_max)
    intsct_inds = np.arange(N)[is_intsct]
    return ro, rd, t_min, t_max, intsct_inds


def render_ray_bundle(model, ro, rd, t_min, t_max):
    """
    The working shape is (k, n, 3) where k is num of samples per ray, n the ray batch size
    During integration the reduction is applied on k

    chain of filtering
    starting with ro, rd (from cameras), and a scene bbox
    - rays that do not intersect scene bbox; sample pts that fall outside the bbox
    - samples that do not fall within alpha mask
    - samples whose densities are very low; no need to compute colors on them
    """
    num_samples, step_size = model.get_num_samples((t_max - t_min).max())
    # print(num_samples)
    n, k = len(ro), num_samples
    # print(n,k)
    ticks = step_size * torch.arange(k, device=ro.device)
    ticks = ticks.view(k, 1, 1)
    t_min = t_min.view(n, 1)
    # t_min = t_min + step_size * torch.rand_like(t_min)  # NOTE seems useless
    t_max = t_max.view(n, 1)
    dists = t_min + ticks  # [n, 1], [k, 1, 1] -> [k, n, 1]
    pts = ro + rd * dists  # [n, 3], [n, 3], [k, n, 1] -> [k, n, 3]
    mask = (ticks < (t_max - t_min)).squeeze(-1)  # [k, 1, 1], [n, 1] -> [k, n, 1] -> [k, n]
    smp_pts = pts[mask]

    if model.alphaMask is not None:
        alphas = model.alphaMask.sample_alpha(smp_pts)
        alpha_mask = alphas > 0
        mask[mask.clone()] = alpha_mask
        smp_pts = pts[mask]

    σ = torch.zeros(k, n, device=ro.device)
    σ[mask] = model.compute_density_feats(smp_pts)
    weights = volume_rend_weights(σ, step_size)
    mask = weights > model.ray_march_weight_thres
    smp_pts = pts[mask]

    app_feats = model.compute_app_feats(smp_pts)
    # viewdirs = rd.view(1, n, 3).expand(k, n, 3)[mask]  # ray dirs for each point
    # additional wild factors here as in nerf-w; wild factors are optimizable
    c_dim = app_feats.shape[-1]
    colors = torch.zeros(k, n, c_dim, device=ro.device)
    colors[mask] = model.feats2color(app_feats)

    weights = weights.view(k, n, 1)  # can be used to compute other expected vals e.g. depth
    bg_weight = 1. - weights.sum(dim=0)  # [n, 1]

    rgbs = (weights * colors).sum(dim=0)  # [n, 3]

    if model.blend_bg_texture:
        uv = spherical_xyz_to_uv(rd)
        bg_feats = model.compute_bg(uv)
        bg_color = model.feats2color(bg_feats)
        rgbs = rgbs + bg_weight * bg_color
    else:
        rgbs = rgbs + bg_weight * 1.  # blend white bg color
    # print(rgbs.shape)
    # rgbs = rgbs.clamp(0, 1)  # don't clamp since this is can be SD latent features

    E_dists = (weights * dists).sum(dim=0)
    bg_dist = 10.  # blend bg distance; just don't make it too large
    E_dists = E_dists + bg_weight * bg_dist
    return rgbs, E_dists, weights.squeeze(-1)


def spherical_xyz_to_uv(xyz):
    # xyz is Tensor of shape [N, 3], uv in [-1, 1]
    x, y, z = xyz.t()  # [N]
    xy = (x ** 2 + y ** 2) ** 0.5
    u = torch.atan2(xy, z) / torch.pi  # [N]
    v = torch.atan2(y, x) / (torch.pi * 2) + 0.5  # [N]
    uv = torch.stack([u, v], -1)  # [N, 2]
    uv = uv * 2 - 1  # [0, 1] -> [-1, 1]
    return uv


def volume_rend_weights(σ, dist):
    α = 1 - torch.exp(-σ * dist)
    T = torch.ones_like(α)
    T[1:] = (1 - α).cumprod(dim=0)[:-1]
    assert (T >= 0).all()
    weights = α * T
    return weights