File size: 3,083 Bytes
3d75a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
import numpy as np
from torch import nn

from data_loader import DataLoader
from helper import ValTest
from modality_lstm import ModalityLSTM

batch_size = 32
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
train_on_gpu = True
output_size = 5
hidden_dim = 128
trip_dim = 7
n_layers = 2
drop_prob = 0.2
net = ModalityLSTM(trip_dim, output_size, batch_size, hidden_dim, n_layers, train_on_gpu, drop_prob, lstm_drop_prob=0.2)
lr=0.001
loss_function = nn.CrossEntropyLoss(ignore_index=-1)
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
epochs = 6
print_every = 5
log_every = 1
evaluate_every = 100

clip = 0.2 # gradient clipping

if train_on_gpu:
    net.cuda()
net.train()

dl = DataLoader(batchsize=batch_size, read_from_pickle=True)
dl.prepare_data()

def pad_trajs(trajs, lengths):
    for w, elem in enumerate(trajs):
        while len(elem) < lengths[0]:
            elem.append([-1] * trip_dim)
    return trajs


losses, avg_losses = [], []

validator = ValTest(dl.val_batches, net, trip_dim, batch_size, device, loss_function, output_size, dl.get_val_size())
test = ValTest(dl.test_batches, net, trip_dim, batch_size, device, loss_function, output_size, dl.get_test_size())

for e in range(1,epochs+1):
    print("epoch ",e)
    hidden = net.init_hidden()
    counter = 0
    torch.cuda.empty_cache()
    for train_sorted, labels_sorted in dl.batches():

        counter += 1
        lengths = [len(x) for x in train_sorted]
        print("Lengths are ", lengths)
        print("SUm of lengths",sum(lengths))
        train_sorted = pad_trajs(train_sorted, lengths)

        X = np.asarray(train_sorted, dtype=np.float)
        input_tensor = torch.from_numpy(X)
        print("Input tensor is ",input_tensor.shape)
        input_tensor = input_tensor.to(device)

        net.zero_grad()
        output, max_padding_for_this_batch = net(input_tensor, lengths)
        print("Output is",output.shape)

        for labelz in labels_sorted:
            while len(labelz) < max_padding_for_this_batch:
                labelz.append(-1)

        labels_for_loss = torch.tensor(labels_sorted).view(max_padding_for_this_batch * batch_size, -1).squeeze(
            1).long().to(device)

        print("Labels for loss is",len(labels_for_loss))

        loss = loss_function(output.view(
                            max_padding_for_this_batch*batch_size, -1),
                            labels_for_loss)
        loss.backward()
        nn.utils.clip_grad_norm_(net.parameters(), clip)
        optimizer.step()

        if counter % log_every == 0:
            losses.append(loss.item())
        if counter % print_every == 0:
            avg_losses.append(sum(losses[-50:]) / 50)
            print(
                f'Epoch: {e:2d}. {counter:d} of {int(dl.get_train_size() / batch_size):d} {avg_losses[len(avg_losses) - 1]:f} Loss: {loss.item():.4f}')
        if counter % evaluate_every == 0:
            validator.run()

torch.save(net.state_dict(),"Model_Wieghts")
print("Testing")

test.run()

torch.save(net.state_dict(),"Model_Wieghts")