File size: 15,844 Bytes
8590074
 
 
 
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286f442
e3e5f9e
8590074
e3e5f9e
 
 
 
 
 
 
 
 
9c2f3de
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
 
9c2f3de
e3e5f9e
 
 
cb4a765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c2f3de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286f442
e3e5f9e
 
 
 
 
 
 
 
 
 
286f442
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
286f442
 
e3e5f9e
 
 
 
 
 
 
 
286f442
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
286f442
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286f442
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b6b2a
8590074
55b6b2a
 
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Open Source Model Licensed under the Apache License Version 2.0 
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited 
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.

# Copyright (C) 2024 THL A29 Limited, a Tencent company.  All rights reserved. 
# The below software and/or models in this distribution may have been 
# modified by THL A29 Limited ("Tencent Modifications"). 
# All Tencent Modifications are Copyright (C) THL A29 Limited.

# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT 
# except for the third-party components listed below. 
# Hunyuan 3D does not impose any additional limitations beyond what is outlined 
# in the repsective licenses of these third-party components. 
# Users must comply with all terms and conditions of original licenses of these third-party 
# components and must ensure that the usage of the third party components adheres to 
# all relevant laws and regulations. 

# For avoidance of doubts, Hunyuan 3D means the large language models and 
# their software and algorithms, including trained model weights, parameters (including 
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, 
# fine-tuning enabling code and other elements of the foregoing made publicly available 
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import spaces
import os
os.environ['CUDA_HOME'] = '/usr/local/cuda-11*'
import warnings
import argparse
import gradio as gr
from glob import glob
import shutil
import torch
import numpy as np
from PIL import Image
from einops import rearrange
from huggingface_hub import snapshot_download

from infer import seed_everything, save_gif
from infer import Text2Image, Removebg, Image2Views, Views2Mesh, GifRenderer

warnings.simplefilter('ignore', category=UserWarning)
warnings.simplefilter('ignore', category=FutureWarning)
warnings.simplefilter('ignore', category=DeprecationWarning)

parser = argparse.ArgumentParser()
parser.add_argument("--use_lite", default=False, action="store_true")
parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str)
parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str)
parser.add_argument("--text2image_path", default="weights/hunyuanDiT", type=str)
parser.add_argument("--save_memory", default=True) # , action="store_true")
parser.add_argument("--device", default="cuda:0", type=str)
args = parser.parse_args()

def find_cuda():
    # Check if CUDA_HOME or CUDA_PATH environment variables are set
    cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')

    if cuda_home and os.path.exists(cuda_home):
        return cuda_home

    # Search for the nvcc executable in the system's PATH
    nvcc_path = shutil.which('nvcc')

    if nvcc_path:
        # Remove the 'bin/nvcc' part to get the CUDA installation path
        cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
        return cuda_path

    return None

cuda_path = find_cuda()

if cuda_path:
    print(f"CUDA installation found at: {cuda_path}")
else:
    print("CUDA installation not found")



def download_models():
    # Create weights directory if it doesn't exist
    os.makedirs("weights", exist_ok=True)
    os.makedirs("weights/hunyuanDiT", exist_ok=True)

    # Download Hunyuan3D-1 model
    try:
        snapshot_download(
            repo_id="tencent/Hunyuan3D-1",
            local_dir="./weights",
            resume_download=True
        )
        print("Successfully downloaded Hunyuan3D-1 model")
    except Exception as e:
        print(f"Error downloading Hunyuan3D-1: {e}")

    # Download HunyuanDiT model
    try:
        snapshot_download(
            repo_id="Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled",
            local_dir="./weights/hunyuanDiT",
            resume_download=True
        )
        print("Successfully downloaded HunyuanDiT model")
    except Exception as e:
        print(f"Error downloading HunyuanDiT: {e}")

# Download models before starting the app
download_models()

################################################################

CONST_PORT = 8080
CONST_MAX_QUEUE = 1
CONST_SERVER = '0.0.0.0'

CONST_HEADER = '''
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'><b>Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D
Generationr</b></a></h2>
Code: <a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'>GitHub</a>. Techenical report: <a href='https://arxiv.org/abs/placeholder' target='_blank'>ArXiv</a>.

❗️❗️❗️**Important Notes:**
- By default, our demo can export a .obj mesh with vertex colors or a .glb mesh.
- If you select "texture mapping," it will export a .obj mesh with a texture map or a .glb mesh.
- If you select "render GIF," it will export a GIF image rendering of the .glb file.
- If the result is unsatisfactory, please try a different seed value (Default: 0).
'''

CONST_CITATION = r"""
If HunYuan3D-1 is helpful, please help to ⭐ the <a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/tencent/Hunyuan3D-1?style=social)](https://github.com/tencent/Hunyuan3D-1)
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@misc{yang2024tencent,
    title={Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation},
    author={Xianghui Yang and Huiwen Shi and Bowen Zhang and Fan Yang and Jiacheng Wang and Hongxu Zhao and Xinhai Liu and Xinzhou Wang and Qingxiang Lin and Jiaao Yu and Lifu Wang and Zhuo Chen and Sicong Liu and Yuhong Liu and Yong Yang and Di Wang and Jie Jiang and Chunchao Guo},
    year={2024},
    eprint={2411.02293},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```
"""

################################################################

def get_example_img_list():
    print('Loading example img list ...')
    return sorted(glob('./demos/example_*.png'))

def get_example_txt_list():
    print('Loading example txt list ...')
    txt_list  = list()
    for line in open('./demos/example_list.txt'):
        txt_list.append(line.strip())
    return txt_list

example_is = get_example_img_list()
example_ts = get_example_txt_list()
################################################################

worker_xbg = Removebg()
print(f"loading {args.text2image_path}")
worker_t2i = Text2Image(
    pretrain = args.text2image_path, 
    device = args.device, 
    save_memory = args.save_memory
)
worker_i2v = Image2Views(
    use_lite = args.use_lite, 
    device = args.device,
    save_memory = args.save_memory
)
worker_v23 = Views2Mesh(
    args.mv23d_cfg_path, 
    args.mv23d_ckt_path, 
    use_lite = args.use_lite, 
    device = args.device,
    save_memory = args.save_memory
)
worker_gif = GifRenderer(args.device)

@spaces.GPU
def stage_0_t2i(text, image, seed, step):
    os.makedirs('./outputs/app_output', exist_ok=True)
    exists = set(int(_) for _ in os.listdir('./outputs/app_output') if not _.startswith("."))
    if len(exists) == 30: shutil.rmtree(f"./outputs/app_output/0");cur_id = 0
    else:                 cur_id = min(set(range(30)) - exists)
    if os.path.exists(f"./outputs/app_output/{(cur_id + 1) % 30}"):
        shutil.rmtree(f"./outputs/app_output/{(cur_id + 1) % 30}")
    save_folder = f'./outputs/app_output/{cur_id}'
    os.makedirs(save_folder, exist_ok=True)

    dst = os.path.join(save_folder, 'img.png')
    
    if not text:
        if image is None: 
            return dst, save_folder
            raise gr.Error("Upload image or provide text ...")
        image.save(dst)
        return dst, save_folder
        
    image = worker_t2i(text, seed, step)
    image.save(dst)
    dst = worker_xbg(image, save_folder)
    return dst, save_folder
    
@spaces.GPU
def stage_1_xbg(image, save_folder): 
    if isinstance(image, str):
        image = Image.open(image)
    dst =  save_folder + '/img_nobg.png'
    rgba = worker_xbg(image)
    rgba.save(dst)
    return dst
    
@spaces.GPU
def stage_2_i2v(image, seed, step, save_folder):
    if isinstance(image, str):
        image = Image.open(image)
    gif_dst = save_folder + '/views.gif'
    res_img, pils = worker_i2v(image, seed, step)
    save_gif(pils, gif_dst)
    views_img, cond_img = res_img[0], res_img[1]
    img_array = np.asarray(views_img, dtype=np.uint8)
    show_img = rearrange(img_array, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
    show_img = show_img[worker_i2v.order, ...]
    show_img = rearrange(show_img, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
    show_img = Image.fromarray(show_img) 
    return views_img, cond_img, show_img

@spaces.GPU
def stage_3_v23(
    views_pil, 
    cond_pil, 
    seed, 
    save_folder,
    target_face_count = 30000,
    do_texture_mapping = True,
    do_render =True
): 
    do_texture_mapping = do_texture_mapping or do_render
    obj_dst = save_folder + '/mesh_with_colors.obj'
    glb_dst = save_folder + '/mesh.glb'
    worker_v23(
        views_pil, 
        cond_pil, 
        seed = seed, 
        save_folder = save_folder,
        target_face_count = target_face_count,
        do_texture_mapping = do_texture_mapping
    )
    return obj_dst, glb_dst

@spaces.GPU
def stage_4_gif(obj_dst, save_folder, do_render_gif=True):
    if not do_render_gif: return None
    gif_dst = save_folder + '/output.gif'
    worker_gif(
        save_folder + '/mesh.obj',
        gif_dst_path = gif_dst
    )
    return gif_dst

#===============================================================
with gr.Blocks() as demo:
    gr.Markdown(CONST_HEADER)
    with gr.Row(variant="panel"):
        with gr.Column(scale=2):
            with gr.Tab("Text to 3D"):
                with gr.Column():
                    text = gr.TextArea('一只黑白相间的熊猫在白色背景上居中坐着,呈现出卡通风格和可爱氛围。', lines=1, max_lines=10, label='Input text')
                    with gr.Row():
                        textgen_seed = gr.Number(value=0, label="T2I seed", precision=0)
                        textgen_step = gr.Number(value=25, label="T2I step", precision=0)
                        textgen_SEED = gr.Number(value=0, label="Gen seed", precision=0)
                        textgen_STEP = gr.Number(value=50, label="Gen step", precision=0)
                        textgen_max_faces = gr.Number(value=90000, label="max number of faces", precision=0)
                        
                    with gr.Row():
                        textgen_do_texture_mapping = gr.Checkbox(label="texture mapping", value=False, interactive=True)
                        textgen_do_render_gif = gr.Checkbox(label="Render gif", value=False, interactive=True)
                        textgen_submit = gr.Button("Generate", variant="primary")

                    with gr.Row():
                        gr.Examples(examples=example_ts, inputs=[text], label="Txt examples", examples_per_page=10)
                    
            with gr.Tab("Image to 3D"):
                with gr.Column():
                    input_image = gr.Image(label="Input image",
                                           width=256, height=256, type="pil",
                                           image_mode="RGBA", sources="upload",
                                           interactive=True)
                    with gr.Row(): 
                        imggen_SEED = gr.Number(value=0, label="Gen seed", precision=0)
                        imggen_STEP = gr.Number(value=50, label="Gen step", precision=0)
                        imggen_max_faces = gr.Number(value=90000, label="max number of faces", precision=0)

                    with gr.Row():
                        imggen_do_texture_mapping = gr.Checkbox(label="texture mapping", value=False, interactive=True)
                        imggen_do_render_gif = gr.Checkbox(label="Render gif", value=False, interactive=True)
                        imggen_submit = gr.Button("Generate", variant="primary")       
                    with gr.Row():
                        gr.Examples(examples=example_is, inputs=[input_image], label="Img examples", examples_per_page=10)
           
        with gr.Column(scale=3):
            with gr.Row():
                with gr.Column(scale=2):
                    rem_bg_image = gr.Image(label="No backgraound image", type="pil",
                                           image_mode="RGBA", interactive=False)
                with gr.Column(scale=3):
                    result_image = gr.Image(label="Multi views", type="pil", interactive=False)
                
            with gr.Row():                
                result_3dobj = gr.Model3D(
                    clear_color=[0.0, 0.0, 0.0, 0.0],
                    label="Output Obj",
                    show_label=True,
                    visible=True,
                    camera_position=[90, 90, None],
                    interactive=False
                )

                result_3dglb = gr.Model3D(
                    clear_color=[0.0, 0.0, 0.0, 0.0],
                    label="Output Glb",
                    show_label=True,
                    visible=True,
                    camera_position=[90, 90, None],
                    interactive=False
                )
                result_gif = gr.Image(label="Rendered GIF", interactive=False)
                
            with gr.Row():    
                gr.Markdown("""
                We recommend download and open Glb using 3D software, such as Blender, MeshLab, etc.
                Limited by gradio, Obj file here only be shown as vertex shading, but Glb can be texture shading.
                """)

#===============================================================

    none = gr.State(None)
    save_folder = gr.State()
    cond_image = gr.State()
    views_image = gr.State()
    text_image = gr.State()
    
    textgen_submit.click(
        fn=stage_0_t2i, inputs=[text, none, textgen_seed, textgen_step], 
        outputs=[rem_bg_image, save_folder],
    ).success(
        fn=stage_2_i2v, inputs=[rem_bg_image, textgen_SEED, textgen_STEP, save_folder], 
        outputs=[views_image, cond_image, result_image],
    ).success(
        fn=stage_3_v23, inputs=[views_image, cond_image, textgen_SEED, save_folder, textgen_max_faces, textgen_do_texture_mapping, textgen_do_render_gif], 
        outputs=[result_3dobj, result_3dglb],
    ).success(
        fn=stage_4_gif, inputs=[result_3dglb, save_folder, textgen_do_render_gif], 
        outputs=[result_gif],
    ).success(lambda: print('Text_to_3D Done ...'))

    imggen_submit.click(
        fn=stage_0_t2i, inputs=[none, input_image, textgen_seed, textgen_step], 
        outputs=[text_image, save_folder],
    ).success(
        fn=stage_1_xbg, inputs=[text_image, save_folder], 
        outputs=[rem_bg_image],
    ).success(
        fn=stage_2_i2v, inputs=[rem_bg_image, imggen_SEED, imggen_STEP, save_folder], 
        outputs=[views_image, cond_image, result_image],
    ).success(
        fn=stage_3_v23, inputs=[views_image, cond_image, imggen_SEED, save_folder, imggen_max_faces, imggen_do_texture_mapping, imggen_do_render_gif], 
        outputs=[result_3dobj, result_3dglb],
    ).success(
        fn=stage_4_gif, inputs=[result_3dglb, save_folder, imggen_do_render_gif], 
        outputs=[result_gif],
    ).success(lambda: print('Image_to_3D Done ...'))
    
#===============================================================

    gr.Markdown(CONST_CITATION)
    demo.queue(max_size=CONST_MAX_QUEUE)
    demo.launch()