File size: 15,379 Bytes
b6df80f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import streamlit as st
import os
import tempfile
import pickle
from typing import List, Dict, Any
import numpy as np
from pathlib import Path
# Document processing
import PyPDF2
import docx
from sentence_transformers import SentenceTransformer
import faiss
# Groq API
from groq import Groq
# Text processing
import nltk
from nltk.tokenize import sent_tokenize
import re
# Download required NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
class DocumentProcessor:
"""Handles document upload and text extraction"""
@staticmethod
def extract_text_from_pdf(file_path: str) -> str:
"""Extract text from PDF file"""
text = ""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
except Exception as e:
st.error(f"Error reading PDF: {str(e)}")
return text
@staticmethod
def extract_text_from_docx(file_path: str) -> str:
"""Extract text from DOCX file"""
text = ""
try:
doc = docx.Document(file_path)
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
except Exception as e:
st.error(f"Error reading DOCX: {str(e)}")
return text
@staticmethod
def extract_text_from_txt(file_path: str) -> str:
"""Extract text from TXT file"""
text = ""
try:
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
except Exception as e:
st.error(f"Error reading TXT: {str(e)}")
return text
def process_uploaded_file(self, uploaded_file) -> str:
"""Process uploaded file and extract text"""
if uploaded_file is None:
return ""
# Save uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{uploaded_file.name.split('.')[-1]}") as tmp_file:
tmp_file.write(uploaded_file.getvalue())
tmp_file_path = tmp_file.name
try:
file_extension = uploaded_file.name.split('.')[-1].lower()
if file_extension == 'pdf':
text = self.extract_text_from_pdf(tmp_file_path)
elif file_extension == 'docx':
text = self.extract_text_from_docx(tmp_file_path)
elif file_extension == 'txt':
text = self.extract_text_from_txt(tmp_file_path)
else:
st.error(f"Unsupported file type: {file_extension}")
return ""
return text
finally:
# Clean up temporary file
os.unlink(tmp_file_path)
class TextChunker:
"""Handles text chunking and preprocessing"""
def __init__(self, chunk_size: int = 1000, overlap: int = 200):
self.chunk_size = chunk_size
self.overlap = overlap
def clean_text(self, text: str) -> str:
"""Clean and preprocess text"""
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text)
# Remove special characters but keep punctuation
text = re.sub(r'[^\w\s\.\!\?\,\;\:\-\(\)]', '', text)
return text.strip()
def create_chunks(self, text: str) -> List[str]:
"""Create overlapping chunks from text"""
cleaned_text = self.clean_text(text)
# Split into sentences first
sentences = sent_tokenize(cleaned_text)
chunks = []
current_chunk = ""
for sentence in sentences:
# If adding this sentence would exceed chunk size, start a new chunk
if len(current_chunk) + len(sentence) > self.chunk_size:
if current_chunk:
chunks.append(current_chunk.strip())
# Create overlap by keeping last part of current chunk
words = current_chunk.split()
if len(words) > 20: # Keep last 20 words for overlap
current_chunk = " ".join(words[-20:]) + " " + sentence
else:
current_chunk = sentence
else:
current_chunk = sentence
else:
current_chunk += " " + sentence
# Add the last chunk
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
class VectorDatabase:
"""Handles vector embeddings and FAISS operations"""
def __init__(self, model_name: str = "all-MiniLM-L6-v2"):
self.embedding_model = SentenceTransformer(model_name)
self.dimension = self.embedding_model.get_sentence_embedding_dimension()
self.index = faiss.IndexFlatIP(self.dimension) # Inner product for similarity
self.chunks = []
self.embeddings = None
def create_embeddings(self, chunks: List[str]) -> np.ndarray:
"""Create embeddings for text chunks"""
with st.spinner("Creating embeddings..."):
embeddings = self.embedding_model.encode(chunks, show_progress_bar=True)
# Normalize embeddings for cosine similarity
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
return embeddings
def add_documents(self, chunks: List[str]):
"""Add documents to the vector database"""
if not chunks:
return
self.chunks.extend(chunks)
embeddings = self.create_embeddings(chunks)
if self.embeddings is None:
self.embeddings = embeddings
else:
self.embeddings = np.vstack([self.embeddings, embeddings])
# Add to FAISS index
self.index.add(embeddings.astype(np.float32))
st.success(f"Added {len(chunks)} chunks to vector database")
def search(self, query: str, k: int = 5) -> List[Dict[str, Any]]:
"""Search for similar documents"""
if self.index.ntotal == 0:
return []
# Create query embedding
query_embedding = self.embedding_model.encode([query])
query_embedding = query_embedding / np.linalg.norm(query_embedding)
# Search in FAISS
scores, indices = self.index.search(query_embedding.astype(np.float32), k)
results = []
for i, (score, idx) in enumerate(zip(scores[0], indices[0])):
if idx < len(self.chunks):
results.append({
'chunk': self.chunks[idx],
'score': float(score),
'rank': i + 1
})
return results
def save_database(self, filepath: str):
"""Save the vector database to disk"""
data = {
'chunks': self.chunks,
'embeddings': self.embeddings,
'index': faiss.serialize_index(self.index)
}
with open(filepath, 'wb') as f:
pickle.dump(data, f)
def load_database(self, filepath: str):
"""Load the vector database from disk"""
try:
with open(filepath, 'rb') as f:
data = pickle.load(f)
self.chunks = data['chunks']
self.embeddings = data['embeddings']
self.index = faiss.deserialize_index(data['index'])
return True
except Exception as e:
st.error(f"Error loading database: {str(e)}")
return False
class RAGSystem:
"""Main RAG system that combines retrieval and generation"""
def __init__(self, groq_api_key: str):
self.groq_client = Groq(api_key=groq_api_key)
self.vector_db = VectorDatabase()
self.doc_processor = DocumentProcessor()
self.text_chunker = TextChunker()
def process_document(self, uploaded_file):
"""Process uploaded document and add to vector database"""
# Extract text from document
text = self.doc_processor.process_uploaded_file(uploaded_file)
if not text:
st.error("No text extracted from document")
return False
# Create chunks
chunks = self.text_chunker.create_chunks(text)
if not chunks:
st.error("No chunks created from text")
return False
# Add to vector database
self.vector_db.add_documents(chunks)
return True
def generate_response(self, query: str, context: str, model: str = "llama-3.3-70b-versatile") -> str:
"""Generate response using Groq API"""
prompt = f"""
Based on the following context, please answer the question. If the answer is not in the context, say "I don't have enough information to answer this question based on the provided documents."
Context:
{context}
Question: {query}
Answer:
"""
try:
chat_completion = self.groq_client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a helpful assistant that answers questions based on provided context. Be accurate and concise."
},
{
"role": "user",
"content": prompt
}
],
model=model,
temperature=0.1,
max_tokens=1000
)
return chat_completion.choices[0].message.content
except Exception as e:
return f"Error generating response: {str(e)}"
def query(self, question: str, model: str = "llama-3.3-70b-versatile") -> Dict[str, Any]:
"""Query the RAG system"""
# Retrieve relevant documents
search_results = self.vector_db.search(question, k=3)
if not search_results:
return {
'answer': "No relevant documents found. Please upload some documents first.",
'sources': []
}
# Combine contexts
context = "\n\n".join([result['chunk'] for result in search_results])
# Generate response
answer = self.generate_response(question, context, model)
return {
'answer': answer,
'sources': search_results
}
def main():
st.set_page_config(
page_title="RAG Application",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
st.title("π RAG Application")
st.markdown("**Upload documents and ask questions using AI-powered search and generation**")
# Initialize session state
if 'rag_system' not in st.session_state:
st.session_state.rag_system = None
if 'documents_processed' not in st.session_state:
st.session_state.documents_processed = 0
# Sidebar for configuration
with st.sidebar:
st.header("βοΈ Configuration")
# API Key input
groq_api_key = st.text_input(
"Groq API Key",
type="password",
help="Enter your Groq API key"
)
if not groq_api_key:
st.warning("Please enter your Groq API key to continue")
st.stop()
# Model selection
model_options = [
"llama-3.3-70b-versatile",
"llama-3.2-90b-text-preview",
"llama-3.1-70b-versatile",
"mixtral-8x7b-32768",
"gemma2-9b-it"
]
selected_model = st.selectbox(
"Select Model",
model_options,
index=0
)
# Initialize RAG system
if st.session_state.rag_system is None:
try:
st.session_state.rag_system = RAGSystem(groq_api_key)
st.success("RAG system initialized!")
except Exception as e:
st.error(f"Error initializing RAG system: {str(e)}")
st.stop()
st.header("π Statistics")
st.metric("Documents Processed", st.session_state.documents_processed)
st.metric("Chunks in Database", len(st.session_state.rag_system.vector_db.chunks))
# Main content area
col1, col2 = st.columns([1, 2])
with col1:
st.header("π Document Upload")
uploaded_files = st.file_uploader(
"Upload documents",
accept_multiple_files=True,
type=['pdf', 'docx', 'txt'],
help="Upload PDF, DOCX, or TXT files"
)
if uploaded_files:
for uploaded_file in uploaded_files:
if st.button(f"Process {uploaded_file.name}"):
with st.spinner(f"Processing {uploaded_file.name}..."):
success = st.session_state.rag_system.process_document(uploaded_file)
if success:
st.session_state.documents_processed += 1
st.success(f"Successfully processed {uploaded_file.name}")
else:
st.error(f"Failed to process {uploaded_file.name}")
with col2:
st.header("π¬ Ask Questions")
if len(st.session_state.rag_system.vector_db.chunks) == 0:
st.info("Please upload and process documents before asking questions.")
else:
question = st.text_input(
"Enter your question:",
placeholder="What is this document about?"
)
if st.button("Ask Question") and question:
with st.spinner("Generating answer..."):
response = st.session_state.rag_system.query(question, selected_model)
st.subheader("Answer:")
st.write(response['answer'])
if response['sources']:
st.subheader("Sources:")
for i, source in enumerate(response['sources']):
with st.expander(f"Source {i+1} (Score: {source['score']:.3f})"):
st.write(source['chunk'])
# Additional features
st.header("π§ Additional Features")
col3, col4 = st.columns(2)
with col3:
if st.button("Clear Database"):
st.session_state.rag_system.vector_db = VectorDatabase()
st.session_state.documents_processed = 0
st.success("Database cleared successfully!")
with col4:
if st.button("Save Database"):
if len(st.session_state.rag_system.vector_db.chunks) > 0:
st.session_state.rag_system.vector_db.save_database("rag_database.pkl")
st.success("Database saved successfully!")
else:
st.warning("No data to save")
if __name__ == "__main__":
main() |