Spaces:
Runtime error
Runtime error
File size: 1,618 Bytes
8a5ef6c 6c7bbb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import os
os.system("pip install openvino-dev==2023.0.1")
import gradio as gr
from openvino.inference_engine import IECore
import cv2
import numpy as np
from PIL import Image
# Load the OpenVINO model
model_xml = 'model.xml'
model_bin = 'model.bin'
ie = IECore()
net = ie.read_network(model=model_xml, weights=model_bin)
exec_net = ie.load_network(network=net, device_name="CPU")
# Define the function for image processing
def upscale_image(input_image):
# Convert Gradio PIL Image to numpy array
input_image = np.array(input_image)
# Preprocess the input image
image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
image = cv2.resize(image, (224, 224))
image = image / 255.0
image = np.transpose(image, (2, 0, 1))
image = image.reshape(1, 3, 224, 224)
# Run inference
outputs = exec_net.infer(inputs={'input': image})
# Post-process the output
output_image = outputs['output'][0]
output_image = np.transpose(output_image, (1, 2, 0))
output_image = np.clip(output_image, 0, 1) * 255
output_image = output_image.astype(np.uint8)
output_image = cv2.cvtColor(output_image, cv2.COLOR_RGB2BGR)
return output_image
# Create the Gradio interface
inputs = gr.inputs.Image(type="pil", label="Input Image") # Use 'pil' type for uploaded images
outputs = gr.outputs.Image(type="pil", label="Upscaled Image")
title = "Image Upscaling App"
description = "Upload an image and see the upscaled result."
iface = gr.Interface(fn=upscale_image, inputs=inputs, outputs=outputs, title=title, description=description)
# Launch the Gradio interface
iface.launch() |