File size: 8,544 Bytes
31157e8
d5f098f
31157e8
06b78c4
bbb83bb
31157e8
06b78c4
 
 
31157e8
1258179
d5f098f
 
31157e8
 
 
06b78c4
d5f098f
 
 
 
 
 
 
31157e8
 
 
 
18fb6c3
 
31157e8
 
18fb6c3
 
 
 
 
 
 
 
 
 
 
 
 
31157e8
18fb6c3
 
 
 
 
 
 
 
 
 
 
 
 
31157e8
 
 
 
 
d5f098f
31157e8
 
 
 
d5f098f
 
 
 
 
 
 
 
 
 
06b78c4
d5f098f
 
1258179
31157e8
06b78c4
 
 
 
 
 
 
 
 
 
 
 
1258179
31157e8
06b78c4
 
 
1c66a83
 
31157e8
 
18fb6c3
31157e8
18fb6c3
 
 
 
 
 
 
 
 
 
 
 
 
 
31157e8
 
 
d5f098f
 
 
 
 
 
 
18fb6c3
 
 
d5f098f
31157e8
 
18fb6c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31157e8
 
 
 
 
 
 
 
 
18fb6c3
31157e8
 
 
18fb6c3
31157e8
1cb2d7e
 
18fb6c3
1cb2d7e
 
 
 
18fb6c3
 
1cb2d7e
 
18fb6c3
1cb2d7e
 
 
 
18fb6c3
1cb2d7e
 
18fb6c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31157e8
 
 
18fb6c3
31157e8
 
 
 
 
 
 
18fb6c3
 
31157e8
 
 
 
 
 
 
 
 
 
 
 
 
 
18fb6c3
 
31157e8
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import random

from huggingface_hub import HfApi, whoami

import gradio as gr
from datasets import load_dataset

from data_to_parquet import to_parquet

EXAM_DATASET_ID = os.getenv("EXAM_DATASET_ID") or "agents-course/unit_1_quiz"
EXAM_MAX_QUESTIONS = os.getenv("EXAM_MAX_QUESTIONS") or 10
EXAM_PASSING_SCORE = os.getenv("EXAM_PASSING_SCORE") or 0.7

ds = load_dataset(EXAM_DATASET_ID, split="train")

upload_api = HfApi(token=os.getenv("HF_TOKEN"))
# Convert dataset to a list of dicts and randomly sort
quiz_data = ds.to_pandas().to_dict("records")
random.shuffle(quiz_data)

# Limit to max questions if specified
if EXAM_MAX_QUESTIONS:
    quiz_data = quiz_data[: int(EXAM_MAX_QUESTIONS)]


def on_user_logged_in(token: gr.OAuthToken | None):
    """
    If the user has a valid token, show Start button.
    Otherwise, keep the login button visible.
    """
    if token is not None:
        return [
            gr.update(visible=False),  # login button visibility
            gr.update(visible=True),  # start button visibility
            gr.update(visible=False),  # next button visibility
            gr.update(visible=False),  # submit button visibility
            "",  # question text
            [],  # radio choices (empty list = no choices)
            "Click 'Start' to begin the quiz",  # status message
            0,  # question_idx
            [],  # user_answers
            "",  # final_markdown content
            token,  # user token
        ]
    else:
        return [
            gr.update(visible=True),  # login button visibility
            gr.update(visible=False),  # start button visibility
            gr.update(visible=False),  # next button visibility
            gr.update(visible=False),  # submit button visibility
            "",  # question text
            [],  # radio choices
            "",  # status message
            0,  # question_idx
            [],  # user_answers
            "",  # final_markdown content
            None,  # no token
        ]


def push_results_to_hub(user_answers, token: gr.OAuthToken | None):
    """
    Create a new dataset from user_answers and push it to the Hub.
    Calculates grade and checks against passing threshold.
    """
    if token is None:
        gr.Warning("Please log in to Hugging Face before pushing!")
        return

    # Calculate grade
    correct_count = sum(1 for answer in user_answers if answer["is_correct"])
    total_questions = len(user_answers)
    grade = correct_count / total_questions if total_questions > 0 else 0

    if grade < float(EXAM_PASSING_SCORE):
        gr.Warning(
            f"Score {grade:.1%} below passing threshold of {float(EXAM_PASSING_SCORE):.1%}"
        )
        return  # do not continue

    gr.Info("Submitting answers to the Hub. Please wait...", duration=2)

    user_info = whoami(token=token.token)
    # TODO:
    # check if username already has "username.parquet" in the dataset and download that (or read values directly from dataset viewer if possible)
    # instead of replacing the values check if the new score is better than the old one
    to_parquet(
        upload_api,  # api
        "agents-course/students-data",  # repo_id
        user_info["name"],  # username
        grade,  # unit1 score
        0.0,  # unit2 score
        0.0,  # unit3 score
        0.0,  # unit4 score
        0,  # already certified or not
    )

    gr.Success(
        f"Your responses have been submitted to the Hub! Final grade: {grade:.1%}"
    )


def handle_quiz(question_idx, user_answers, selected_answer, is_start):
    """
    Handle quiz state transitions and store answers
    """
    if not is_start and question_idx < len(quiz_data):
        current_q = quiz_data[question_idx]
        correct_reference = current_q["correct_answer"]
        correct_reference = f"answer_{correct_reference}".lower()
        is_correct = selected_answer == current_q[correct_reference]
        user_answers.append(
            {
                "question": current_q["question"],
                "selected_answer": selected_answer,
                "correct_answer": current_q[correct_reference],
                "is_correct": is_correct,
                "correct_reference": correct_reference,
            }
        )
        question_idx += 1

    if question_idx >= len(quiz_data):
        correct_count = sum(1 for answer in user_answers if answer["is_correct"])
        grade = correct_count / len(user_answers)
        results_text = (
            f"**Quiz Complete!**\n\n"
            f"Your score: {grade:.1%}\n"
            f"Passing score: {float(EXAM_PASSING_SCORE):.1%}\n\n"
        )
        return [
            "",  # question_text
            gr.update(choices=[], visible=False),  # hide radio choices
            f"{'✅ Passed!' if grade >= float(EXAM_PASSING_SCORE) else '❌ Did not pass'}",
            question_idx,
            user_answers,
            gr.update(visible=False),  # start button visibility
            gr.update(visible=False),  # next button visibility
            gr.update(visible=True),  # submit button visibility
            results_text,  # final results text
        ]

    # Show next question
    q = quiz_data[question_idx]
    return [
        f"## Question {question_idx + 1} \n### {q['question']}",  # question text
        gr.update(  # properly update radio choices
            choices=[q["answer_a"], q["answer_b"], q["answer_c"], q["answer_d"]],
            value=None,
            visible=True,
        ),
        "Select an answer and click 'Next' to continue.",
        question_idx,
        user_answers,
        gr.update(visible=False),  # start button visibility
        gr.update(visible=True),  # next button visibility
        gr.update(visible=False),  # submit button visibility
        "",  # clear final markdown
    ]


def success_message(response):
    # response is whatever push_results_to_hub returned
    return f"{response}\n\n**Success!**"


with gr.Blocks() as demo:
    demo.title = f"Dataset Quiz for {EXAM_DATASET_ID}"

    # State variables
    question_idx = gr.State(value=0)
    user_answers = gr.State(value=[])
    user_token = gr.State(value=None)

    with gr.Row(variant="compact"):
        gr.Markdown(f"## Welcome to the {EXAM_DATASET_ID} Quiz")

    with gr.Row(variant="compact"):
        gr.Markdown(
            "Log in first, then click 'Start' to begin. Answer each question, click 'Next', and finally click 'Submit' to publish your results to the Hugging Face Hub."
        )

    with gr.Row(variant="panel"):
        question_text = gr.Markdown("")
        radio_choices = gr.Radio(
            choices=[], label="Your Answer", scale=1.5, visible=False
        )

    with gr.Row(variant="compact"):
        status_text = gr.Markdown("")
        final_markdown = gr.Markdown("")

    with gr.Row(variant="compact"):
        login_btn = gr.LoginButton(visible=True)
        start_btn = gr.Button("Start ⏭️", visible=True)
        next_btn = gr.Button("Next ⏭️", visible=False)
        submit_btn = gr.Button("Submit ✅", visible=False)

    # Wire up the event handlers
    login_btn.click(
        fn=on_user_logged_in,
        inputs=None,
        outputs=[
            login_btn,
            start_btn,
            next_btn,
            submit_btn,
            question_text,
            radio_choices,
            status_text,
            question_idx,
            user_answers,
            final_markdown,
            user_token,
        ],
    )

    start_btn.click(
        fn=handle_quiz,
        inputs=[question_idx, user_answers, gr.State(""), gr.State(True)],
        outputs=[
            question_text,
            radio_choices,
            status_text,
            question_idx,
            user_answers,
            start_btn,
            next_btn,
            submit_btn,
            final_markdown,
        ],
    )

    next_btn.click(
        fn=handle_quiz,
        inputs=[question_idx, user_answers, radio_choices, gr.State(False)],
        outputs=[
            question_text,
            radio_choices,
            status_text,
            question_idx,
            user_answers,
            start_btn,
            next_btn,
            submit_btn,
            final_markdown,
        ],
    )

    submit_btn.click(fn=push_results_to_hub, inputs=[user_answers])

if __name__ == "__main__":
    # Note: If testing locally, you'll need to run `huggingface-cli login` or set HF_TOKEN
    # environment variable for the login to work locally.
    demo.launch()