|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
import openai |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
openai.api_key = os.getenv("OPENAI_API_KEY") |
|
|
|
|
|
class SmartAgent: |
|
def __init__(self): |
|
print("SmartAgent initialized using OpenAI.") |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Question received: {question[:100]}") |
|
try: |
|
response = openai.ChatCompletion.create( |
|
model="gpt-3.5-turbo", |
|
messages=[{"role": "user", "content": question}], |
|
temperature=0.2, |
|
max_tokens=100 |
|
) |
|
answer = response["choices"][0]["message"]["content"].strip() |
|
print(f"Answer: {answer}") |
|
return self.clean_answer(answer) |
|
except Exception as e: |
|
print(f"Error: {e}") |
|
return "ERROR" |
|
|
|
def clean_answer(self, answer: str) -> str: |
|
return answer.strip().replace("FINAL ANSWER:", "").replace("Answer:", "").strip() |
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = profile.username |
|
print(f"Logged in as: {username}") |
|
else: |
|
return "Please log in to Hugging Face using the button above.", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except Exception as e: |
|
return f"Failed to fetch questions: {e}", None |
|
|
|
agent = SmartAgent() |
|
results_log = [] |
|
answers_payload = [] |
|
|
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question = item.get("question") |
|
if not task_id or not question: |
|
continue |
|
try: |
|
answer = agent(question) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": answer}) |
|
results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": answer}) |
|
except Exception as e: |
|
results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": f"ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
submission_data = { |
|
"username": username, |
|
"agent_code": agent_code, |
|
"answers": answers_payload |
|
} |
|
|
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
summary = ( |
|
f"β
Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Score: {result_data.get('score')}%\n" |
|
f"Correct: {result_data.get('correct_count')} / {result_data.get('total_attempted')}\n" |
|
f"Message: {result_data.get('message', '')}" |
|
) |
|
return summary, pd.DataFrame(results_log) |
|
except Exception as e: |
|
return f"β Submission failed: {e}", pd.DataFrame(results_log) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# π€ GAIA Smart Agent Evaluation") |
|
gr.Markdown( |
|
""" |
|
1. Login to Hugging Face. |
|
2. Click "Run Evaluation" to evaluate your OpenAI-powered agent. |
|
3. View your score on the leaderboard (requires public repo). |
|
""" |
|
) |
|
gr.LoginButton() |
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="Status", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Agent Answers") |
|
|
|
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"β
SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"β
SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |