import os import gradio as gr import requests import pandas as pd import openai # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Secure API Key --- openai.api_key = os.getenv("OPENAI_API_KEY") # --- Smart Agent Logic --- class SmartAgent: def __init__(self): print("SmartAgent initialized using OpenAI.") def __call__(self, question: str) -> str: print(f"Question received: {question[:100]}") try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": question}], temperature=0.2, max_tokens=100 ) answer = response["choices"][0]["message"]["content"].strip() print(f"Answer: {answer}") return self.clean_answer(answer) except Exception as e: print(f"Error: {e}") return "ERROR" def clean_answer(self, answer: str) -> str: return answer.strip().replace("FINAL ANSWER:", "").replace("Answer:", "").strip() # --- Evaluation and Submission Logic --- def run_and_submit_all(profile: gr.OAuthProfile | None): space_id = os.getenv("SPACE_ID") if profile: username = profile.username print(f"Logged in as: {username}") else: return "Please log in to Hugging Face using the button above.", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() print(f"Fetched {len(questions_data)} questions.") except Exception as e: return f"Failed to fetch questions: {e}", None agent = SmartAgent() results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") question = item.get("question") if not task_id or not question: continue try: answer = agent(question) answers_payload.append({"task_id": task_id, "submitted_answer": answer}) results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": answer}) except Exception as e: results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": f"ERROR: {e}"}) if not answers_payload: return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) submission_data = { "username": username, "agent_code": agent_code, "answers": answers_payload } try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() summary = ( f"✅ Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Score: {result_data.get('score')}%\n" f"Correct: {result_data.get('correct_count')} / {result_data.get('total_attempted')}\n" f"Message: {result_data.get('message', '')}" ) return summary, pd.DataFrame(results_log) except Exception as e: return f"❌ Submission failed: {e}", pd.DataFrame(results_log) # --- UI --- with gr.Blocks() as demo: gr.Markdown("# 🤖 GAIA Smart Agent Evaluation") gr.Markdown( """ 1. Login to Hugging Face. 2. Click "Run Evaluation" to evaluate your OpenAI-powered agent. 3. View your score on the leaderboard (requires public repo). """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Status", lines=5, interactive=False) results_table = gr.DataFrame(label="Agent Answers") run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) if __name__ == "__main__": space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("â„šī¸ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: # Print repo URLs if SPACE_ID is found print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("â„šī¸ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Gradio Interface for Basic Agent Evaluation...") demo.launch(debug=True, share=False)