File size: 81,577 Bytes
7c691e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
import gradio as gr
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
import config
from envs import RESULTS_REPO_ID, REPO_ID, API, HF_TOKEN
from pathlib import Path
import pandas as pd
import os
import json
from utils.viz import create_scatter_plot, create_flow_chart, create_bar_chart, create_task_success_heatmap, create_leaderboard
from utils.processing import check_and_process_uploads
from huggingface_hub import snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime
import json
import re
import markdown
import asyncio
from apscheduler.schedulers.asyncio import AsyncIOScheduler
import weave
from utils.db import TracePreprocessor
from gradio.themes.soft import Soft

preprocessor = TracePreprocessor()

from datetime import datetime

abs_path = Path(__file__).parent

def restart_space():
    API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)

# New function to download results
def download_latest_results():
    print("Downloading latest results...")
    snapshot_download(RESULTS_REPO_ID, 
                    local_dir= "evals_upload",
                    repo_type='dataset',
                    tqdm_class=None,
                    etag_timeout=30,
                    max_workers=4,
                    )
    print("Download complete.")


def get_analyzed_traces(agent_name, benchmark_name):
    return preprocessor.get_analyzed_traces(agent_name, benchmark_name)

def get_failure_report(agent_name, benchmark_name):
    return preprocessor.get_failure_report(agent_name, benchmark_name)

def parse_json_files(folder_path, benchmark_name, aggregate=True):
    return preprocessor.get_parsed_results(benchmark_name, aggregate=aggregate)

def update_agent_dropdown(benchmark_name, metric):
    df = parse_json_files(os.path.join(abs_path, "evals_live"), benchmark_name)
    agents = df['Agent Name'].tolist()
    best_agent = get_best_agent(benchmark_name, metric)
    return gr.Dropdown(choices=agents, value=best_agent, label="Select Agent")

def get_best_agent(benchmark_name, metric):
    df = parse_json_files(os.path.join(abs_path, "evals_live"), benchmark_name)
    return df.loc[df[metric].idxmax()]['Agent Name']

def update_task_analysis(benchmark_name, agent_name):
    if not agent_name:
        return "Please select an agent.", None, None, ""
    
    analyzed_traces = get_analyzed_traces(agent_name, benchmark_name)
    if not analyzed_traces:
        return f"No analysis available for agent: {agent_name}", None, None, ""
    
    task_ids = list(analyzed_traces.keys())

    overview, flow_chart, _ = update_task_details(benchmark_name, agent_name, task_ids[0])
    
    return overview, flow_chart, gr.Dropdown(choices=task_ids, value=task_ids[0], label="Select Task"), ""

def update_task_details(benchmark_name, agent_name, task_id):
    if not task_id:
        return "Please select a task.", None, ""
    
    analyzed_traces = get_analyzed_traces(agent_name, benchmark_name)
    if not analyzed_traces or task_id not in analyzed_traces:
        return f"No analysis available for task: {task_id}", None, ""
    
    analysis = analyzed_traces[task_id]

    summary = analysis.get('task_analysis', {})
    
    overview = f"### Summary\n\n{summary.get('overview', 'No overview available.')}\n\n"
    # overview += f"### Successes\n{summary.get('key_successes', 'No successes listed.')}\n\n"
    # overview += f"### Challenges\n{summary.get('main_challenges', 'No challenges listed.')}\n\n"
    # overview += f"### Overall Assessment\n{summary.get('overall_assessment', 'No assessment available.')}\n\n"
    
    if summary.get('overview', 'No overview available.') != "Not available":
        flow_chart = create_flow_chart(analysis['steps'])
    else:
        flow_chart = None
    
    return overview, flow_chart, ""


def format_call_info(step, step_index):
    call_data = step['call_data']
    analysis = step['analysis']

    def format_json(obj):
        # if isinstance(obj, dict) and 'choices' in obj:
        #     # Special handling for message content
        #     formatted_content = format_message_content(obj['choices'][0])
        #     return f'<div class="message-content">{formatted_content}</div>'
        # else:
        json_str = json.dumps(obj, indent=2)
        json_str = json_str.replace(' ', '&nbsp;')
        json_str = json_str.replace('\n', '<br>')
        return f'<div class="json-wrapper">{json_str}</div>'

    # Currently not used but we can enable it to format message content
    def format_message_content(content):
        # Convert Markdown to HTML
        html_content = markdown.markdown(content)
        
        # Replace ``` code blocks with styled pre blocks
        html_content = re.sub(r'```python\n(.*?)```', lambda m: f'<pre class="code-block">{m.group(1)}</pre>', html_content, flags=re.DOTALL)
        
        return html_content

    formatted_info = f"""
    <style>
        .json-wrapper {{
            white-space: pre-wrap;
            word-wrap: break-word;
            font-family: monospace;
            max-height: 300px;
            overflow-y: auto;
            background-color: #f5f5f5;
            padding: 10px;
            border-radius: 5px;
        }}
        .message-content {{
            white-space: normal;
            word-wrap: break-word;
            font-family: Arial, sans-serif;
            max-height: 500px;
            overflow-y: auto;
            background-color: #ffffff;
            padding: 10px;
            border-radius: 5px;
            border: 1px solid #e0e0e0;
        }}
        .code-block {{
            background-color: #f0f0f0;
            padding: 10px;
            border-radius: 5px;
            font-family: monospace;
            white-space: pre-wrap;
            word-wrap: break-word;
        }}
    </style>

    <h3>Step {step_index + 1}: {analysis.get('headline', '')}</h3>

    <h4>Call Metadata</h4>
    <ul>
        <li><strong>Weave Task ID:</strong> {call_data['weave_task_id']}</li>
        <li><strong>Trace ID:</strong> {call_data['trace_id']}</li>
        <li><strong>Project ID:</strong> {call_data['project_id']}</li>
        <li><strong>Created Timestamp:</strong> {datetime.fromtimestamp(call_data['created_timestamp'])}</li>
        <li><strong>Model:</strong> {call_data['inputs']['model']}</li>
    </ul>

    <h4>Inputs</h4>
    {format_json(call_data['inputs'])}

    <h4>Outputs</h4>
    {format_json(call_data['outputs'])}

    <h4>Usage</h4>
    {format_json(call_data['summary'])}

    <h4>Analysis</h4>
    <ul>
        <li><strong>Description:</strong> {analysis['description']}</li>
        <li><strong>Assessment:</strong> {analysis['assessment']}</li>
        <li><strong>Success:</strong> {analysis['success']}</li>
        <li><strong>Action Type:</strong> {analysis['action_type']}</li>
    </ul>
    """
    return formatted_info


def update_failure_report(agent_name, benchmark_name):
    failure_report = get_failure_report(agent_name, benchmark_name)
    if not failure_report:
        return "No failure report available for this agent.", None

    # Create overview of failure categories
    categories_overview = "### Failure Categories:\n\n"
    for category in failure_report['failure_categories']:
        categories_overview += f"#### {category['category_name']}\n"
        categories_overview += f"{category['description']}\n\n"

    # Count tasks affected by each category
    category_counts = {}
    for task, classification in failure_report['task_classifications'].items():
        category_id = classification['category_id']
        category_counts[category_id] = category_counts.get(category_id, 0) + 1

    # Prepare data for bar chart
    categories = [cat['category_name'] for cat in failure_report['failure_categories']]
    counts = [category_counts.get(str(i+1), 0) for i in range(len(categories))]

    # Create bar chart
    chart = create_bar_chart(categories, counts, "Failure Categories", "Number of Affected Tasks", "Failure Categories Distribution")

    return categories_overview, chart

from gradio.themes.utils import colors, fonts, sizes
from typing import Iterable
class MyTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.blue,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Lato"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )

my_theme = MyTheme()

with gr.Blocks(theme=my_theme, css='css.css', title="HAL: Holistic Agent Leaderboard") as demo:
    # gr.Markdown((Path(__file__).parent / "header.md").read_text(), elem_classes=["text-large"])
    gr.HTML("""
            <style>
    .hal-header {
        color: #ecf0f1;
        border-radius: 10px;
        padding: 40px 20px;
        text-align: center;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    .hal-title {
        font-size: 2.5em;
        font-weight: 700;
        margin: 0;
        letter-spacing: 2px;
        text-transform: uppercase;
    }
    .hal-subtitle {
        font-size: 1.2em;
        font-weight: 300;
        margin-top: 15px;
        margin-left: auto;
        margin-right: auto;
        line-height: 1.6;
        text-align: center;
    }
    .hal-highlight {
        color: #3498db;
        font-weight: 600;
    }
</style>

<header class="hal-header">
    <h1 class="hal-title">Holistic Agent Leaderboard (HAL)</h1>
    <p class="hal-subtitle">
        A standardized, cost-aware, and third-party leaderboard for evaluating agents.
    </p>
</header>""")
    gr.HTML("""
<style>
    .feature-row {
        display: flex;
        justify-content: space-between;
        margin-top: 20px;
        margin-bottom: 20px;
    }
    .feature-column {
        flex: 1;
        padding: 25px;
        background-color: #ffffff;
        border-radius: 10px;
        margin: 0 15px;
        text-align: left;
        box-shadow: 0 6px 12px rgba(0, 0, 0, 0.1);
        display: flex;
        flex-direction: column;
        align-items: flex-start;
        border-top: 5px solid #3498db;
        transition: transform 0.3s ease, box-shadow 0.3s ease;
    }
    .feature-column:hover {
        transform: translateY(-5px);
        box-shadow: 0 5px 10px rgba(0, 0, 0, 0.15);
    }
    .feature-keyword {
        font-size: 1.2em;
        font-weight: bold;
        color: #1b9e77;
        margin-bottom: 10px;
        text-transform: uppercase;
        letter-spacing: 1px;
    }
    .feature-content {
        flex-grow: 1;
    }
    .feature-description {
        font-size: 0.95em;
        line-height: 1.6;
        color: #333;
    }
</style>

<div class="feature-row">
    <div class="feature-column">
        <div class="feature-keyword">Standardized</div>
        <div class="feature-content">
            <p class="feature-description">Evaluations across agent benchmarks are all recorded to a single leaderboard that evaluates every listed agent in the same way.</p>
        </div>
    </div>
    <div class="feature-column">
        <div class="feature-keyword">Cost-controlled</div>
        <div class="feature-content">
            <p class="feature-description">For downstream users, understanding the cost of running agents is a significant need for adoption. For agent developers, cost-controlled evaluations help develop accurate baselines.</p>
        </div>
    </div>
    <div class="feature-column">
        <div class="feature-keyword">Third-party</div>
        <div class="feature-content">
            <p class="feature-description">Agent developers clearly have competing objectives in reporting accuracy: they want to achieve state-of-the-art performance.</p>
        </div>
    </div>
</div>
<style>
    .section-heading {
        font-size: 1.8em;
        font-weight: bold;
        color: #2c3e50;
        margin-top: 40px;
        margin-bottom: 20px;
        text-align: left;
    }
    .user-types-container {
        display: grid;
        grid-template-columns: repeat(2, 1fr);
        gap: 20px;
        margin-top: 20px;
    }
    .user-type {
        background-color: #ffffff;
        border-radius: 10px;
        padding: 25px;
        box-shadow: 0 6px 12px rgba(0, 0, 0, 0.1);
        transition: transform 0.3s ease, box-shadow 0.3s ease;
        border-left: 5px solid #3498db;
    }
    .user-type:hover {
        transform: translateY(-5px);
        box-shadow: 0 5px 10px rgba(0, 0, 0, 0.15);
    }
    .user-type-title {
        font-size: 1.2em;
        font-weight: bold;
        color: #3498db;
        margin-bottom: 10px;
    }
    .user-type-description {
        font-size: 0.95em;
        line-height: 1.6;
        color: #333;
    }
    .user-type-links a {
        display: inline-block;
        padding: 5px 12px;
        margin-bottom: 5px;
        background-color: #f0f4f8;
        color: #2c3e50 !important; /* Force the color change */
        text-decoration: none !important; /* Force remove underline */
        border-radius: 15px;
        font-size: 0.85em;
        transition: all 0.3s ease;
        border: 1px solid #e1e8ed;
    }
    .user-type-links a:hover {
        background-color: #3498db;
        color: white !important; /* Force the color change on hover */
        transform: translateY(-2px);
        box-shadow: 0 2px 5px rgba(52, 152, 219, 0.2);
        text-decoration: none !important; /* Ensure no underline on hover */
    }
    .user-type-links a:visited {
        color: #2c3e50 !important; /* Ensure visited links have the same color */
    }
    .user-type-links a::before {
        content: "→";
        margin-right: 5px;
        font-size: 1.1em;
    }
</style>

<h2 class="section-heading">Who is it for?</h2>
<p>We see HAL being useful for four types of users:</p>

<div class="user-types-container">
    <div class="user-type">
        <h3 class="user-type-title">Downstream Users & Procurers</h3>
        <p class="user-type-description">Customers looking to deploy agents can get visibility into existing benchmarks, know developers building useful agents, and identify the state of the art for both cost and accuracy for their tasks of interest.</p>
        <div class="user-type-links">
            <a href="#leaderboards">Leaderboards</a>
        </div>
    </div>
    <div class="user-type">
        <h3 class="user-type-title">Agent Benchmark Developers</h3>
        <p class="user-type-description">Reporting results on a centralized leaderboard could allow improved visibility into agent benchmarks that measure real-world utility.</p>
        <div class="user-type-links">
            <a href="#benchmark-submission">Add a Benchmark</a>
        </div>
    </div>
    <div class="user-type">
        <h3 class="user-type-title">Agent Developers</h3>
        <p class="user-type-description">HAL allows for easy reproduction of past agents, clear comparison with past baselines, and a straightforward way to compete on a leaderboard.</p>
        <div class="user-type-links">
            <a href="#agent-submission">Submit an Agent</a>
            <a href="#leaderboards">Leaderboards</a>
            <a href="#reproduction-guide">Reproduction Guide</a>
        </div>
    </div>
    <div class="user-type">
        <h3 class="user-type-title">Safety Researchers</h3>
        <p class="user-type-description">Understanding agent capabilities on real-world safety threats and their associated costs is crucial. For example, Cybench evaluations could provide insights into agent performance and affordability for potential adversaries.</p>
        <div class="user-type-links">
            <a href="#cybench-results">Cybench Leaderboard (coming soon)</a>
            <a href="#agent-monitor">Agent Monitor</a>
        </div>
    </div>
</div>
</br>
<h2 class="section-heading" id="leaderboards">Leaderboards</h2>
<p>Select a benchmark to see the agent leaderboard. Verified results have been run by the HAL team:</p>
""")
    
    with gr.Tabs() as tabs:
        with gr.Tab("CORE-Bench"):
            gr.HTML("""
            <p>
            CORE-Bench evaluates the ability of agents to computationally reproduce the results of published scientific papers. Agents are given the codebase of a paper and must install all libraries and dependencies, run the code, and read through the output and figures to answer questions about the paper. The benchmark has tasks at three difficulty levels:
            </p>
            """)
            with gr.Tab("CORE-Bench-Hard"):
                gr.HTML("""
                <p>
                    <i><b>CORE-Bench-Hard:</b></i> The agent is given the codebase of the paper and must install all libraries and dependencies, run the code, and read through the output and figures to answer questions about the paper. This level is most akin to fully reproducing a paper and is the most realistic and challenging level.
                </p>
                """)                
                with gr.Row():
                    with gr.Column(scale=2):
                        Leaderboard(
                            value=create_leaderboard(parse_json_files(os.path.join(abs_path, "evals_live"), 'corebench_hard'), ci_metrics=["Accuracy", "Total Cost"]),
                            select_columns=SelectColumns(
                                default_selection=config.COREBENCH_ON_LOAD_COLUMNS + ["Verified"],
                                cant_deselect=["Agent Name"],
                                label="Select Columns to Display:",
                            ),
                            hide_columns=config.COREBENCH_HIDE_COLUMNS,
                            search_columns=config.COREBENCH_SEARCH_COLUMNS,
                        )
                        # gr.Markdown("""*Error ranges span from the lowest to highest observed values in repeated runs.*""", elem_classes=["text-right"])
                with gr.Row():
                    gr.Markdown("### Accuracy vs. Cost on CORE-Bench-Hard")
                with gr.Row():
                    scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'corebench_hard', aggregate=False), "Total Cost", "Accuracy", "Total Cost (in USD)", "Accuracy", ["Agent Name"]))
                
                gr.HTML('<div style="height: 30px;"></div>')
                gr.Markdown("## Task success heatmap")
                gr.Markdown("The task success heatmap shows which agent can solve which tasks. Agents are sorted by total accuracy (higher is better); tasks in USACO are sorted by decreasing order of difficulty (tasks on the left are solved by the most agents; tasks on the right are solved by the least. For agents that have been run more than once, the run with the highest score is shown.")
                with gr.Row():
                    task_success_heatmap = gr.Plot()
                demo.load(
                lambda: create_task_success_heatmap(
                    preprocessor.get_task_success_data('corebench_hard'),
                    'CORE-Bench-Hard'
                ),
                outputs=[task_success_heatmap]
                )
            with gr.Tab("CORE-Bench-Medium"):
                gr.HTML("""
                <p>        
                <i><b>CORE-Bench-Medium:</b></i> The agent is given a Dockerfile and instructions on how to use the Dockerfile to fully reproduce the paper. This level mainly evaluates agents ability to use and interact with the terminal. The agent must then answer questions about the output of the code, as in the above level.
                </p>
                """)
                with gr.Row():
                    with gr.Column(scale=2):
                        Leaderboard(
                            value=create_leaderboard(parse_json_files(os.path.join(abs_path, "evals_live"), 'corebench_medium'), ci_metrics=["Accuracy", "Total Cost"]),
                            select_columns=SelectColumns(
                                default_selection=config.COREBENCH_ON_LOAD_COLUMNS + ["Verified"],
                                cant_deselect=["Agent Name"],
                                label="Select Columns to Display:",
                            ),
                            hide_columns=config.COREBENCH_HIDE_COLUMNS,
                            search_columns=config.COREBENCH_SEARCH_COLUMNS,
                        )
                        # gr.Markdown("""*Error ranges span from the lowest to highest observed values in repeated runs.*""", elem_classes=["text-right"])
                with gr.Row():
                    gr.Markdown("### Accuracy vs. Cost on CORE-Bench-Medium")
                with gr.Row():
                    scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'corebench_medium', aggregate=False), "Total Cost", "Accuracy", "Total Cost (in USD)", "Accuracy", ["Agent Name"]))
                
                gr.HTML('<div style="height: 30px;"></div>')
                gr.Markdown("## Task success heatmap")
                gr.Markdown("The task success heatmap shows which agent can solve which tasks. Agents are sorted by total accuracy (higher is better); tasks in USACO are sorted by decreasing order of difficulty (tasks on the left are solved by the most agents; tasks on the right are solved by the least. For agents that have been run more than once, the run with the highest score is shown.")
                with gr.Row():
                    task_success_heatmap = gr.Plot()
                demo.load(
                lambda: create_task_success_heatmap(
                    preprocessor.get_task_success_data('corebench_medium'),
                    'CORE-Bench-Medium'
                ),
                outputs=[task_success_heatmap]
                )
            with gr.Tab("CORE-Bench-Easy"):
                gr.HTML("""
                <p>         
                <i><b>CORE-Bench-Easy:</b></i> The agent is given the output of the code and must answer questions about the output without running any code. To answer questions, agents must navigate through the terminal output as well as files and figures generated by the code.
                </p>
                """)
                with gr.Row():
                    with gr.Column(scale=2):
                        Leaderboard(
                            value=create_leaderboard(parse_json_files(os.path.join(abs_path, "evals_live"), 'corebench_easy'), ci_metrics=["Accuracy", "Total Cost"]),
                            select_columns=SelectColumns(
                                default_selection=config.COREBENCH_ON_LOAD_COLUMNS + ["Verified"],
                                cant_deselect=["Agent Name"],
                                label="Select Columns to Display:",
                            ),
                            hide_columns=config.COREBENCH_HIDE_COLUMNS,
                            search_columns=config.COREBENCH_SEARCH_COLUMNS,
                        )
                        # gr.Markdown("""*Error ranges span from the lowest to highest observed values in repeated runs.*""", elem_classes=["text-right"])
                with gr.Row():
                    gr.Markdown("### Accuracy vs. Cost on CORE-Bench-Easy")
                with gr.Row():
                    scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'corebench_easy', aggregate=False), "Total Cost", "Accuracy", "Total Cost (in USD)", "Accuracy", ["Agent Name"]))

                gr.HTML('<div style="height: 30px;"></div>')
                gr.Markdown("## Task success heatmap")
                gr.Markdown("The task success heatmap shows which agent can solve which tasks. Agents are sorted by total accuracy (higher is better); tasks in USACO are sorted by decreasing order of difficulty (tasks on the left are solved by the most agents; tasks on the right are solved by the least. For agents that have been run more than once, the run with the highest score is shown.")
                with gr.Row():
                    task_success_heatmap = gr.Plot()
                demo.load(
                lambda: create_task_success_heatmap(
                    preprocessor.get_task_success_data('corebench_easy'),
                    'CORE-Bench-Easy'
                ),
                outputs=[task_success_heatmap]
                )

            gr.Markdown((Path(__file__).parent / "agent_submission_core.md").read_text())
        with gr.Tab("USACO"):
            gr.Markdown("""The USA Computing Olympiad (USACO) is a computer programming competition for pre-college students. This benchmark evaluates the performance of AI agents on a set of 307 USACO tasks. The agents are evaluated based on the number of tasks correctly solved.""")
            with gr.Row():
                with gr.Column(scale=2):
                    Leaderboard(
                        value=create_leaderboard(parse_json_files(os.path.join(abs_path, "evals_live"), 'usaco'), ci_metrics=["Accuracy", "Total Cost"]),
                        select_columns=SelectColumns(
                            default_selection=config.USACO_ON_LOAD_COLUMNS + ["Verified"],
                            cant_deselect=["Agent Name"],
                            label="Select Columns to Display:",
                        ),
                        hide_columns=config.USACO_HIDE_COLUMNS,
                        search_columns=config.USACO_SEARCH_COLUMNS,
                    )
                    gr.Markdown("""*Error ranges span from the lowest to highest observed values in repeated runs.*""", elem_classes=["text-right"])
            with gr.Row():
                gr.Markdown("### Accuracy vs. Cost for USACO agents")
            with gr.Row():
                scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'usaco', aggregate=False), "Total Cost", "Accuracy", "Total Cost (in USD)", "Accuracy", ["Agent Name"]))
            
            gr.HTML('<div style="height: 30px;"></div>')
            gr.Markdown("## Task success heatmap")
            gr.Markdown("The task success heatmap shows which agent can solve which tasks. Agents are sorted by total accuracy (higher is better); tasks in USACO are sorted by decreasing order of difficulty (tasks on the left are solved by the most agents; tasks on the right are solved by the least. For agents that have been run more than once, the run with the highest score is shown.")
            with gr.Row():
                task_success_heatmap = gr.Plot()
            demo.load(
            lambda: create_task_success_heatmap(
                preprocessor.get_task_success_data('usaco'),
                'USACO'
            ),
            outputs=[task_success_heatmap]
            )

            gr.HTML("""
            <style>
                .grouped-section {
                    border: 2px solid #dee2e6; /* Color matching unactivated tabs */
                    border-radius: 10px;
                    padding: 30px;
                    margin-top: 40px;
                    margin-bottom: 40px;
                    position: relative;
                }

                .grouped-section-title {
                    font-size: 1.7em;
                    font-weight: bold;
                    color: #2c3e50;
                    margin-bottom: 20px;
                    padding-bottom: 10px;
                    border-bottom: 2px solid #dee2e6;
                }
            </style>
            """)
            with gr.Group(elem_classes=["grouped-section"]):
                gr.Markdown("# Agent monitor", elem_classes=["grouped-section-title"], elem_id="agent-monitor")
                gr.Markdown('The agent monitor provides an overview of the recurring errors an agent makes as well as a summary of the steps the agent takes to solve a task. It currently consists of two main components:')

                gr.HTML('<div style="height: 10px;"></div>')
                gr.Markdown("## Failure report for each agent")
                gr.Markdown('Select an agent to see why the agent fails to solve tasks correctly. Note that these descriptions (and the failure categories) are generated by LLM-based evaluations of the agent logs and may contain inaccuracies.')
                gr.HTML('<div style="height: 10px;"></div>')
                with gr.Row():
                    with gr.Column(scale=1):
                        failure_report_agent_dropdown = gr.Dropdown(label="Select Agent for Failure Report")
                gr.HTML('<div style="height: 10px;"></div>')
                with gr.Row():
                    with gr.Column(scale=1):
                        failure_categories_overview = gr.Markdown()
                
                    with gr.Column(scale=1):
                        failure_categories_chart = gr.Plot()

                # Initialize the failure report agent dropdown with all agents
                demo.load(update_agent_dropdown, 
                        inputs=[gr.Textbox(value="usaco", visible=False), gr.Textbox(value="Accuracy", visible=False)], 
                        outputs=[failure_report_agent_dropdown])
                
                # Update failure report when agent is selected
                failure_report_agent_dropdown.change(update_failure_report,
                                                    inputs=[failure_report_agent_dropdown, gr.Textbox(value="usaco", visible=False)],
                                                    outputs=[failure_categories_overview, failure_categories_chart])

                gr.HTML('<div style="height: 30px;"></div>')
                gr.Markdown("## Task overview")
                gr.HTML('<div style="height: 10px;"></div>')
                with gr.Row():
                    with gr.Column(scale=1):
                        agent_dropdown = gr.Dropdown(label="Select Agent")
                    with gr.Column(scale=1):
                        task_dropdown = gr.Dropdown(label="Select USACO Task")
                gr.HTML('<div style="height: 10px;"></div>')
                with gr.Row():
                    task_overview = gr.Markdown()
                with gr.Row():
                    flow_chart = gr.Plot(label="Task Flow")

                # Initialize the agent dropdown with the best agent
                demo.load(update_agent_dropdown, inputs=[gr.Textbox(value="usaco", visible=False), gr.Textbox(value="Accuracy", visible=False)], outputs=[agent_dropdown])
                demo.load(update_task_analysis, inputs=[gr.Textbox(value="usaco", visible=False), agent_dropdown], outputs=[task_overview, flow_chart, task_dropdown, gr.Textbox(visible=False)])

                agent_dropdown.change(update_task_analysis, 
                                    inputs=[gr.Textbox(value="usaco", visible=False), agent_dropdown],
                                    outputs=[task_overview, flow_chart, task_dropdown, gr.Textbox(visible=False)])
                task_dropdown.change(update_task_details,
                                    inputs=[gr.Textbox(value="usaco", visible=False), agent_dropdown, task_dropdown],
                                    outputs=[task_overview, flow_chart, gr.Textbox(visible=False)])
            
            gr.Markdown("## Raw predictions")
            gr.Markdown('Select an agent to see the raw predictions made by the agent for each task. We also provide information on token usage for each call.')
            with gr.Accordion("Expand to inspect raw predictions of agents...", open=False):
                with gr.Row():
                    with gr.Column(scale=1):
                        raw_agent_dropdown = gr.Dropdown(label="Select Agent")
                    with gr.Column(scale=1):
                        raw_task_dropdown = gr.Dropdown(label="Select Task")
                    with gr.Column(scale=1):
                        raw_step_dropdown = gr.Dropdown(label="Select Step")
                with gr.Row():
                    raw_call_details = gr.HTML()
                
                def update_raw_task_dropdown(agent_name):
                    analyzed_traces = get_analyzed_traces(agent_name, "usaco")
                    if not analyzed_traces:
                        return gr.Dropdown(choices=[], label="Select Task"), gr.Dropdown(choices=[], label="Select Step"), f"No raw predictions data available for agent: {agent_name}."
                    task_ids = list(analyzed_traces.keys())
                    steps = analyzed_traces[task_ids[0]]['steps']
                    return gr.Dropdown(choices=task_ids, label="Select Task", value=task_ids[0]), gr.Dropdown(choices=[(f"Step {i+1}", i) for i in range(len(steps))], label="Select Step", value=0), format_call_info(get_analyzed_traces(agent_name, "usaco")[task_ids[0]]['steps'][0], 0)

                def update_raw_step_dropdown(agent_name, task_id):
                    analyzed_traces = get_analyzed_traces(agent_name, "usaco")
                    if not analyzed_traces or task_id not in analyzed_traces:
                        return gr.Dropdown(choices=[], label="Select Step", value="No data available.")
                    steps = analyzed_traces[task_id]['steps']
                    return gr.Dropdown(choices=[(f"Step {i+1}", i) for i in range(len(steps))], label="Select Step", value=0), format_call_info(steps[0], 0)

                def update_raw_call_details(agent_name, task_id, step_index):
                    analyzed_traces = get_analyzed_traces(agent_name, "usaco")
                    if not analyzed_traces or task_id not in analyzed_traces:
                        return "No data available for this selection."
                    steps = analyzed_traces[task_id]['steps']
                    if step_index is None:
                        return "Invalid step selection."
                    step = steps[step_index]
                    return format_call_info(step, step_index)

                # Initialize the raw agent dropdown with all agents
                demo.load(update_agent_dropdown, 
                        inputs=[gr.Textbox(value="usaco", visible=False), gr.Textbox(value="Accuracy", visible=False)], 
                        outputs=[raw_agent_dropdown])
                demo.load(update_raw_task_dropdown,
                        inputs=[raw_agent_dropdown],
                        outputs=[raw_task_dropdown, raw_step_dropdown])
                demo.load(update_raw_call_details,
                        inputs=[raw_agent_dropdown, raw_task_dropdown, raw_step_dropdown],
                        outputs=[raw_call_details])

                raw_agent_dropdown.change(update_raw_task_dropdown, 
                                        inputs=[raw_agent_dropdown], 
                                        outputs=[raw_task_dropdown, raw_step_dropdown, raw_call_details])
                raw_task_dropdown.change(update_raw_step_dropdown, 
                                        inputs=[raw_agent_dropdown, raw_task_dropdown], 
                                        outputs=[raw_step_dropdown, raw_call_details])
                raw_step_dropdown.change(update_raw_call_details, 
                                        inputs=[raw_agent_dropdown, raw_task_dropdown, raw_step_dropdown], 
                                        outputs=[raw_call_details])
        
       
        with gr.Tab("SWE-bench Verified (Mini)"):
            gr.Markdown("""SWE-bench is a dataset that tests systems' ability to solve GitHub issues automatically. Verified is a human-validated subset of 500 problems reviewed by software engineers. The  We are currently actively developing this platform and this benchmark is not fully implemented yet.""")
            with gr.Row():
                with gr.Column(scale=2):
                    Leaderboard(
                        value=create_leaderboard(parse_json_files(os.path.join(abs_path, "evals_live"), 'swebench_verified_mini'), ci_metrics=["Accuracy", "Total Cost"]),
                        select_columns=SelectColumns(
                            default_selection=config.SWEBENCH_ON_LOAD_COLUMNS + ["Verified"],
                            cant_deselect=["Agent Name"],
                            label="Select Columns to Display:",
                        ),
                        hide_columns=config.SWEBENCH_HIDE_COLUMNS,
                        search_columns=config.SWEBENCH_SEARCH_COLUMNS,
                    )
                    gr.Markdown("""*Error ranges span from the lowest to highest observed values in repeated runs.*""", elem_classes=["text-right"])
            with gr.Row():
                gr.Markdown("### Accuracy vs. Cost for SWE-bench agents")
            with gr.Row():
                scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'swebench_verified_mini', aggregate=False), "Total Cost", "Accuracy", "Total Cost (in USD)", "Accuracy", ["Agent Name"]))
            
            gr.HTML('<div style="height: 30px;"></div>')
            gr.Markdown("## Task success heatmap")
            gr.Markdown("The task success heatmap shows which agent can solve which tasks. Agents are sorted by total accuracy (higher is better); tasks in SWE-bench are sorted by decreasing order of difficulty (tasks on the left are solved by the most agents; tasks on the right are solved by the least. For agents that have been run more than once, the run with the highest score is shown.")
            with gr.Row():
                task_success_heatmap = gr.Plot()
            demo.load(
            lambda: create_task_success_heatmap(
                preprocessor.get_task_success_data('swebench_verified_mini'),
                'SWE-bench Verified'
            ),
            outputs=[task_success_heatmap]
            )

            # gr.HTML("""
            # <style>
            #     .grouped-section {
            #         border: 2px solid #dee2e6; /* Color matching unactivated tabs */
            #         border-radius: 10px;
            #         padding: 30px;
            #         margin-top: 40px;
            #         margin-bottom: 40px;
            #         position: relative;
            #     }

            #     .grouped-section-title {
            #         font-size: 1.7em;
            #         font-weight: bold;
            #         color: #2c3e50;
            #         margin-bottom: 20px;
            #         padding-bottom: 10px;
            #         border-bottom: 2px solid #dee2e6;
            #     }
            # </style>
            # """)
            # with gr.Group(elem_classes=["grouped-section"]):
            #     gr.Markdown("# Agent monitor", elem_classes=["grouped-section-title"], elem_id="agent-monitor")

            #     gr.HTML('<div style="height: 10px;"></div>')
            #     gr.Markdown("## Failure report for each agent")
            #     gr.Markdown('Select an agent to see why the agent fails to solve tasks correctly. Note that these descriptions (and the failure categories) are generated by LLM-based evaluations of the agent logs and may contain inaccuracies.')
            #     gr.HTML('<div style="height: 10px;"></div>')
            #     with gr.Row():
            #         with gr.Column(scale=1):
            #             failure_report_agent_dropdown = gr.Dropdown(label="Select Agent for Failure Report")
            #     gr.HTML('<div style="height: 10px;"></div>')
            #     with gr.Row():
            #         with gr.Column(scale=1):
            #             failure_categories_overview = gr.Markdown()
                
            #         with gr.Column(scale=1):
            #             failure_categories_chart = gr.Plot()

            #     # Initialize the failure report agent dropdown with all agents
            #     demo.load(update_agent_dropdown, 
            #             inputs=[gr.Textbox(value="swebench_verified", visible=False), gr.Textbox(value="Accuracy", visible=False)], 
            #             outputs=[failure_report_agent_dropdown])
                
            #     # Update failure report when agent is selected
            #     failure_report_agent_dropdown.change(update_failure_report,
            #                                         inputs=[failure_report_agent_dropdown, gr.Textbox(value="swebench_verified", visible=False)],
            #                                         outputs=[failure_categories_overview, failure_categories_chart])

            #     gr.HTML('<div style="height: 30px;"></div>')
            #     gr.Markdown("## Task overview")
            #     gr.HTML('<div style="height: 10px;"></div>')
            #     with gr.Row():
            #         with gr.Column(scale=1):
            #             agent_dropdown = gr.Dropdown(label="Select Agent")
            #         with gr.Column(scale=1):
            #             task_dropdown = gr.Dropdown(label="Select SWE-bench Verified Task")
            #     gr.HTML('<div style="height: 10px;"></div>')
            #     with gr.Row():
            #         task_overview = gr.Markdown()
            #     with gr.Row():
            #         flow_chart = gr.Plot(label="Task Flow")

            #     # Initialize the agent dropdown with the best agent
            #     demo.load(update_agent_dropdown, inputs=[gr.Textbox(value="swebench_verified", visible=False), gr.Textbox(value="Accuracy", visible=False)], outputs=[agent_dropdown])
            #     demo.load(update_task_analysis, inputs=[gr.Textbox(value="swebench_verified", visible=False), agent_dropdown], outputs=[task_overview, flow_chart, task_dropdown, gr.Textbox(visible=False)])

            #     agent_dropdown.change(update_task_analysis, 
            #                         inputs=[gr.Textbox(value="swebench_verified", visible=False), agent_dropdown],
            #                         outputs=[task_overview, flow_chart, task_dropdown, gr.Textbox(visible=False)])
            #     task_dropdown.change(update_task_details,
            #                         inputs=[gr.Textbox(value="swebench_verified", visible=False), agent_dropdown, task_dropdown],
            #                         outputs=[task_overview, flow_chart, gr.Textbox(visible=False)])
            
            gr.Markdown("## Raw predictions")
            gr.Markdown('Select an agent to see the raw predictions made by the agent for each task. We also provide information on token usage for each call.')
            with gr.Accordion("Expand to inspect raw predictions of agents...", open=False):
                with gr.Row():
                    with gr.Column(scale=1):
                        raw_agent_dropdown = gr.Dropdown(label="Select Agent")
                    with gr.Column(scale=1):
                        raw_task_dropdown = gr.Dropdown(label="Select Task")
                    with gr.Column(scale=1):
                        raw_step_dropdown = gr.Dropdown(label="Select Step")
                with gr.Row():
                    raw_call_details = gr.HTML()
                
                def update_raw_task_dropdown(agent_name):
                    analyzed_traces = get_analyzed_traces(agent_name, "swebench_verified_mini")
                    if not analyzed_traces:
                        return gr.Dropdown(choices=[], label="Select Task"), gr.Dropdown(choices=[], label="Select Step"), f"No raw predictions data available for agent: {agent_name}."
                    task_ids = list(analyzed_traces.keys())
                    steps = analyzed_traces[task_ids[0]]['steps']
                    return gr.Dropdown(choices=task_ids, label="Select Task", value=task_ids[0]), gr.Dropdown(choices=[(f"Step {i+1}", i) for i in range(len(steps))], label="Select Step", value=0), format_call_info(get_analyzed_traces(agent_name, "swebench_verified_mini")[task_ids[0]]['steps'][0], 0)

                def update_raw_step_dropdown(agent_name, task_id):
                    analyzed_traces = get_analyzed_traces(agent_name, "swebench_verified_mini")
                    if not analyzed_traces or task_id not in analyzed_traces:
                        return gr.Dropdown(choices=[], label="Select Step", value="No data available.")
                    steps = analyzed_traces[task_id]['steps']
                    return gr.Dropdown(choices=[(f"Step {i+1}", i) for i in range(len(steps))], label="Select Step", value=0), format_call_info(steps[0], 0)

                def update_raw_call_details(agent_name, task_id, step_index):
                    analyzed_traces = get_analyzed_traces(agent_name, "swebench_verified_mini")
                    if not analyzed_traces or task_id not in analyzed_traces:
                        return "No data available for this selection."
                    steps = analyzed_traces[task_id]['steps']
                    if step_index is None:
                        return "Invalid step selection."
                    step = steps[step_index]
                    return format_call_info(step, step_index)

                # Initialize the raw agent dropdown with all agents
                demo.load(update_agent_dropdown, 
                        inputs=[gr.Textbox(value="swebench_verified_mini", visible=False), gr.Textbox(value="Accuracy", visible=False)], 
                        outputs=[raw_agent_dropdown])
                demo.load(update_raw_task_dropdown,
                        inputs=[raw_agent_dropdown],
                        outputs=[raw_task_dropdown, raw_step_dropdown])
                demo.load(update_raw_call_details,
                        inputs=[raw_agent_dropdown, raw_task_dropdown, raw_step_dropdown],
                        outputs=[raw_call_details])

                raw_agent_dropdown.change(update_raw_task_dropdown, 
                                        inputs=[raw_agent_dropdown], 
                                        outputs=[raw_task_dropdown, raw_step_dropdown, raw_call_details])
                raw_task_dropdown.change(update_raw_step_dropdown, 
                                        inputs=[raw_agent_dropdown, raw_task_dropdown], 
                                        outputs=[raw_step_dropdown, raw_call_details])
                raw_step_dropdown.change(update_raw_call_details, 
                                        inputs=[raw_agent_dropdown, raw_task_dropdown, raw_step_dropdown], 
                                        outputs=[raw_call_details])
        
        
        with gr.Tab("SWE-bench Verified"):
            gr.Markdown("""SWE-bench is a dataset that tests systems' ability to solve GitHub issues automatically. Verified is a human-validated subset of 500 problems reviewed by software engineers. The  We are currently actively developing this platform and this benchmark is not fully implemented yet.""")
            with gr.Row():
                with gr.Column(scale=2):
                    Leaderboard(
                        value=create_leaderboard(parse_json_files(os.path.join(abs_path, "evals_live"), 'swebench_verified'), ci_metrics=["Accuracy", "Total Cost"]),
                        select_columns=SelectColumns(
                            default_selection=config.SWEBENCH_ON_LOAD_COLUMNS + ["Verified"],
                            cant_deselect=["Agent Name"],
                            label="Select Columns to Display:",
                        ),
                        hide_columns=config.SWEBENCH_HIDE_COLUMNS,
                        search_columns=config.SWEBENCH_SEARCH_COLUMNS,
                    )
                    gr.Markdown("""*Error ranges span from the lowest to highest observed values in repeated runs.*""", elem_classes=["text-right"])
            with gr.Row():
                gr.Markdown("### Accuracy vs. Cost for SWE-bench agents")
            with gr.Row():
                scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'swebench_verified', aggregate=False), "Total Cost", "Accuracy", "Total Cost (in USD)", "Accuracy", ["Agent Name"]))
            
            gr.HTML('<div style="height: 30px;"></div>')
            gr.Markdown("## Task success heatmap")
            gr.Markdown("The task success heatmap shows which agent can solve which tasks. Agents are sorted by total accuracy (higher is better); tasks in SWE-bench are sorted by decreasing order of difficulty (tasks on the left are solved by the most agents; tasks on the right are solved by the least. For agents that have been run more than once, the run with the highest score is shown.")
            with gr.Row():
                task_success_heatmap = gr.Plot()
            demo.load(
            lambda: create_task_success_heatmap(
                preprocessor.get_task_success_data('swebench_verified'),
                'SWE-bench Verified'
            ),
            outputs=[task_success_heatmap]
            )

            # gr.HTML("""
            # <style>
            #     .grouped-section {
            #         border: 2px solid #dee2e6; /* Color matching unactivated tabs */
            #         border-radius: 10px;
            #         padding: 30px;
            #         margin-top: 40px;
            #         margin-bottom: 40px;
            #         position: relative;
            #     }

            #     .grouped-section-title {
            #         font-size: 1.7em;
            #         font-weight: bold;
            #         color: #2c3e50;
            #         margin-bottom: 20px;
            #         padding-bottom: 10px;
            #         border-bottom: 2px solid #dee2e6;
            #     }
            # </style>
            # """)
            # with gr.Group(elem_classes=["grouped-section"]):
            #     gr.Markdown("# Agent monitor", elem_classes=["grouped-section-title"], elem_id="agent-monitor")

            #     gr.HTML('<div style="height: 10px;"></div>')
            #     gr.Markdown("## Failure report for each agent")
            #     gr.Markdown('Select an agent to see why the agent fails to solve tasks correctly. Note that these descriptions (and the failure categories) are generated by LLM-based evaluations of the agent logs and may contain inaccuracies.')
            #     gr.HTML('<div style="height: 10px;"></div>')
            #     with gr.Row():
            #         with gr.Column(scale=1):
            #             failure_report_agent_dropdown = gr.Dropdown(label="Select Agent for Failure Report")
            #     gr.HTML('<div style="height: 10px;"></div>')
            #     with gr.Row():
            #         with gr.Column(scale=1):
            #             failure_categories_overview = gr.Markdown()
                
            #         with gr.Column(scale=1):
            #             failure_categories_chart = gr.Plot()

            #     # Initialize the failure report agent dropdown with all agents
            #     demo.load(update_agent_dropdown, 
            #             inputs=[gr.Textbox(value="swebench_verified", visible=False), gr.Textbox(value="Accuracy", visible=False)], 
            #             outputs=[failure_report_agent_dropdown])
                
            #     # Update failure report when agent is selected
            #     failure_report_agent_dropdown.change(update_failure_report,
            #                                         inputs=[failure_report_agent_dropdown, gr.Textbox(value="swebench_verified", visible=False)],
            #                                         outputs=[failure_categories_overview, failure_categories_chart])

            #     gr.HTML('<div style="height: 30px;"></div>')
            #     gr.Markdown("## Task overview")
            #     gr.HTML('<div style="height: 10px;"></div>')
            #     with gr.Row():
            #         with gr.Column(scale=1):
            #             agent_dropdown = gr.Dropdown(label="Select Agent")
            #         with gr.Column(scale=1):
            #             task_dropdown = gr.Dropdown(label="Select SWE-bench Verified Task")
            #     gr.HTML('<div style="height: 10px;"></div>')
            #     with gr.Row():
            #         task_overview = gr.Markdown()
            #     with gr.Row():
            #         flow_chart = gr.Plot(label="Task Flow")

            #     # Initialize the agent dropdown with the best agent
            #     demo.load(update_agent_dropdown, inputs=[gr.Textbox(value="swebench_verified", visible=False), gr.Textbox(value="Accuracy", visible=False)], outputs=[agent_dropdown])
            #     demo.load(update_task_analysis, inputs=[gr.Textbox(value="swebench_verified", visible=False), agent_dropdown], outputs=[task_overview, flow_chart, task_dropdown, gr.Textbox(visible=False)])

            #     agent_dropdown.change(update_task_analysis, 
            #                         inputs=[gr.Textbox(value="swebench_verified", visible=False), agent_dropdown],
            #                         outputs=[task_overview, flow_chart, task_dropdown, gr.Textbox(visible=False)])
            #     task_dropdown.change(update_task_details,
            #                         inputs=[gr.Textbox(value="swebench_verified", visible=False), agent_dropdown, task_dropdown],
            #                         outputs=[task_overview, flow_chart, gr.Textbox(visible=False)])
            
            gr.Markdown("## Raw predictions")
            gr.Markdown('Select an agent to see the raw predictions made by the agent for each task. We also provide information on token usage for each call.')
            with gr.Accordion("Expand to inspect raw predictions of agents...", open=False):
                with gr.Row():
                    with gr.Column(scale=1):
                        raw_agent_dropdown = gr.Dropdown(label="Select Agent")
                    with gr.Column(scale=1):
                        raw_task_dropdown = gr.Dropdown(label="Select Task")
                    with gr.Column(scale=1):
                        raw_step_dropdown = gr.Dropdown(label="Select Step")
                with gr.Row():
                    raw_call_details = gr.HTML()
                
                def update_raw_task_dropdown(agent_name):
                    analyzed_traces = get_analyzed_traces(agent_name, "swebench_verified")
                    if not analyzed_traces:
                        return gr.Dropdown(choices=[], label="Select Task"), gr.Dropdown(choices=[], label="Select Step"), f"No raw predictions data available for agent: {agent_name}."
                    task_ids = list(analyzed_traces.keys())
                    steps = analyzed_traces[task_ids[0]]['steps']
                    return gr.Dropdown(choices=task_ids, label="Select Task", value=task_ids[0]), gr.Dropdown(choices=[(f"Step {i+1}", i) for i in range(len(steps))], label="Select Step", value=0), format_call_info(get_analyzed_traces(agent_name, "swebench_verified")[task_ids[0]]['steps'][0], 0)

                def update_raw_step_dropdown(agent_name, task_id):
                    analyzed_traces = get_analyzed_traces(agent_name, "swebench_verified")
                    if not analyzed_traces or task_id not in analyzed_traces:
                        return gr.Dropdown(choices=[], label="Select Step", value="No data available.")
                    steps = analyzed_traces[task_id]['steps']
                    return gr.Dropdown(choices=[(f"Step {i+1}", i) for i in range(len(steps))], label="Select Step", value=0), format_call_info(steps[0], 0)

                def update_raw_call_details(agent_name, task_id, step_index):
                    analyzed_traces = get_analyzed_traces(agent_name, "swebench_verified")
                    if not analyzed_traces or task_id not in analyzed_traces:
                        return "No data available for this selection."
                    steps = analyzed_traces[task_id]['steps']
                    if step_index is None:
                        return "Invalid step selection."
                    step = steps[step_index]
                    return format_call_info(step, step_index)

                # Initialize the raw agent dropdown with all agents
                demo.load(update_agent_dropdown, 
                        inputs=[gr.Textbox(value="swebench_verified", visible=False), gr.Textbox(value="Accuracy", visible=False)], 
                        outputs=[raw_agent_dropdown])
                demo.load(update_raw_task_dropdown,
                        inputs=[raw_agent_dropdown],
                        outputs=[raw_task_dropdown, raw_step_dropdown])
                demo.load(update_raw_call_details,
                        inputs=[raw_agent_dropdown, raw_task_dropdown, raw_step_dropdown],
                        outputs=[raw_call_details])

                raw_agent_dropdown.change(update_raw_task_dropdown, 
                                        inputs=[raw_agent_dropdown], 
                                        outputs=[raw_task_dropdown, raw_step_dropdown, raw_call_details])
                raw_task_dropdown.change(update_raw_step_dropdown, 
                                        inputs=[raw_agent_dropdown, raw_task_dropdown], 
                                        outputs=[raw_step_dropdown, raw_call_details])
                raw_step_dropdown.change(update_raw_call_details, 
                                        inputs=[raw_agent_dropdown, raw_task_dropdown, raw_step_dropdown], 
                                        outputs=[raw_call_details])
        
        
        
        with gr.Tab("SWE-bench Lite"):
            gr.Markdown("""SWE-bench is a dataset that tests systems' ability to solve GitHub issues automatically. Lite is a subset of 300 tasks of the original SWE-bench. We are currently actively developing this platform and this benchmark is not fully implemented yet.""")
            with gr.Row():
                with gr.Column(scale=2):
                    Leaderboard(
                        value=create_leaderboard(parse_json_files(os.path.join(abs_path, "evals_live"), 'swebench_lite'), ci_metrics=["Accuracy", "Total Cost"]),
                        select_columns=SelectColumns(
                            default_selection=config.SWEBENCH_ON_LOAD_COLUMNS + ["Verified"],
                            cant_deselect=["Agent Name"],
                            label="Select Columns to Display:",
                        ),
                        hide_columns=config.SWEBENCH_HIDE_COLUMNS,
                        search_columns=config.SWEBENCH_SEARCH_COLUMNS,
                    )
                    gr.Markdown("""*Error ranges span from the lowest to highest observed values in repeated runs.*""", elem_classes=["text-right"])
            with gr.Row():
                gr.Markdown("### Accuracy vs. Cost for SWE-bench agents")
            with gr.Row():
                scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'swebench_lite', aggregate=False), "Total Cost", "Accuracy", "Total Cost (in USD)", "Accuracy", ["Agent Name"]))
            
            gr.HTML('<div style="height: 30px;"></div>')
            gr.Markdown("## Task success heatmap")
            gr.Markdown("The task success heatmap shows which agent can solve which tasks. Agents are sorted by total accuracy (higher is better); tasks in SWE-bench are sorted by decreasing order of difficulty (tasks on the left are solved by the most agents; tasks on the right are solved by the least. For agents that have been run more than once, the run with the highest score is shown.")
            with gr.Row():
                task_success_heatmap = gr.Plot()
            demo.load(
            lambda: create_task_success_heatmap(
                preprocessor.get_task_success_data('swebench_lite'),
                'SWE-bench Lite'
            ),
            outputs=[task_success_heatmap]
            )

            gr.HTML("""
            <style>
                .grouped-section {
                    border: 2px solid #dee2e6; /* Color matching unactivated tabs */
                    border-radius: 10px;
                    padding: 30px;
                    margin-top: 40px;
                    margin-bottom: 40px;
                    position: relative;
                }

                .grouped-section-title {
                    font-size: 1.7em;
                    font-weight: bold;
                    color: #2c3e50;
                    margin-bottom: 20px;
                    padding-bottom: 10px;
                    border-bottom: 2px solid #dee2e6;
                }
            </style>
            """)
            with gr.Group(elem_classes=["grouped-section"]):
                gr.Markdown("# Agent monitor", elem_classes=["grouped-section-title"], elem_id="agent-monitor")

                gr.HTML('<div style="height: 10px;"></div>')
                gr.Markdown("## Failure report for each agent")
                gr.Markdown('Select an agent to see why the agent fails to solve tasks correctly. Note that these descriptions (and the failure categories) are generated by LLM-based evaluations of the agent logs and may contain inaccuracies.')
                gr.HTML('<div style="height: 10px;"></div>')
                with gr.Row():
                    with gr.Column(scale=1):
                        failure_report_agent_dropdown = gr.Dropdown(label="Select Agent for Failure Report")
                gr.HTML('<div style="height: 10px;"></div>')
                with gr.Row():
                    with gr.Column(scale=1):
                        failure_categories_overview = gr.Markdown()
                
                    with gr.Column(scale=1):
                        failure_categories_chart = gr.Plot()

                # Initialize the failure report agent dropdown with all agents
                demo.load(update_agent_dropdown, 
                        inputs=[gr.Textbox(value="swebench_lite", visible=False), gr.Textbox(value="Accuracy", visible=False)], 
                        outputs=[failure_report_agent_dropdown])
                
                # Update failure report when agent is selected
                failure_report_agent_dropdown.change(update_failure_report,
                                                    inputs=[failure_report_agent_dropdown, gr.Textbox(value="swebench_lite", visible=False)],
                                                    outputs=[failure_categories_overview, failure_categories_chart])

                gr.HTML('<div style="height: 30px;"></div>')
                gr.Markdown("## Task overview")
                gr.HTML('<div style="height: 10px;"></div>')
                with gr.Row():
                    with gr.Column(scale=1):
                        agent_dropdown = gr.Dropdown(label="Select Agent")
                    with gr.Column(scale=1):
                        task_dropdown = gr.Dropdown(label="Select SWE-bench Lite Task")
                gr.HTML('<div style="height: 10px;"></div>')
                with gr.Row():
                    task_overview = gr.Markdown()
                with gr.Row():
                    flow_chart = gr.Plot(label="Task Flow")

                # Initialize the agent dropdown with the best agent
                demo.load(update_agent_dropdown, inputs=[gr.Textbox(value="swebench_lite", visible=False), gr.Textbox(value="Accuracy", visible=False)], outputs=[agent_dropdown])
                demo.load(update_task_analysis, inputs=[gr.Textbox(value="swebench_lite", visible=False), agent_dropdown], outputs=[task_overview, flow_chart, task_dropdown, gr.Textbox(visible=False)])

                agent_dropdown.change(update_task_analysis, 
                                    inputs=[gr.Textbox(value="swebench_lite", visible=False), agent_dropdown],
                                    outputs=[task_overview, flow_chart, task_dropdown, gr.Textbox(visible=False)])
                task_dropdown.change(update_task_details,
                                    inputs=[gr.Textbox(value="swebench_lite", visible=False), agent_dropdown, task_dropdown],
                                    outputs=[task_overview, flow_chart, gr.Textbox(visible=False)])
            
            gr.Markdown("## Raw predictions")
            gr.Markdown('Select an agent to see the raw predictions made by the agent for each task. We also provide information on token usage for each call.')
            with gr.Accordion("Expand to inspect raw predictions of agents...", open=False):
                with gr.Row():
                    with gr.Column(scale=1):
                        raw_agent_dropdown = gr.Dropdown(label="Select Agent")
                    with gr.Column(scale=1):
                        raw_task_dropdown = gr.Dropdown(label="Select Task")
                    with gr.Column(scale=1):
                        raw_step_dropdown = gr.Dropdown(label="Select Step")
                with gr.Row():
                    raw_call_details = gr.HTML()
                
                def update_raw_task_dropdown(agent_name):
                    analyzed_traces = get_analyzed_traces(agent_name, "swebench_lite")
                    if not analyzed_traces:
                        return gr.Dropdown(choices=[], label="Select Task"), gr.Dropdown(choices=[], label="Select Step"), f"No raw predictions data available for agent: {agent_name}."
                    task_ids = list(analyzed_traces.keys())
                    steps = analyzed_traces[task_ids[0]]['steps']
                    return gr.Dropdown(choices=task_ids, label="Select Task", value=task_ids[0]), gr.Dropdown(choices=[(f"Step {i+1}", i) for i in range(len(steps))], label="Select Step", value=0), format_call_info(get_analyzed_traces(agent_name, "swebench_lite")[task_ids[0]]['steps'][0], 0)

                def update_raw_step_dropdown(agent_name, task_id):
                    analyzed_traces = get_analyzed_traces(agent_name, "swebench_lite")
                    if not analyzed_traces or task_id not in analyzed_traces:
                        return gr.Dropdown(choices=[], label="Select Step", value="No data available.")
                    steps = analyzed_traces[task_id]['steps']
                    return gr.Dropdown(choices=[(f"Step {i+1}", i) for i in range(len(steps))], label="Select Step", value=0), format_call_info(steps[0], 0)

                def update_raw_call_details(agent_name, task_id, step_index):
                    analyzed_traces = get_analyzed_traces(agent_name, "swebench_lite")
                    if not analyzed_traces or task_id not in analyzed_traces:
                        return "No data available for this selection."
                    steps = analyzed_traces[task_id]['steps']
                    if step_index is None:
                        return "Invalid step selection."
                    step = steps[step_index]
                    return format_call_info(step, step_index)

                # Initialize the raw agent dropdown with all agents
                demo.load(update_agent_dropdown, 
                        inputs=[gr.Textbox(value="swebench_lite", visible=False), gr.Textbox(value="Accuracy", visible=False)], 
                        outputs=[raw_agent_dropdown])
                demo.load(update_raw_task_dropdown,
                        inputs=[raw_agent_dropdown],
                        outputs=[raw_task_dropdown, raw_step_dropdown])
                demo.load(update_raw_call_details,
                        inputs=[raw_agent_dropdown, raw_task_dropdown, raw_step_dropdown],
                        outputs=[raw_call_details])

                raw_agent_dropdown.change(update_raw_task_dropdown, 
                                        inputs=[raw_agent_dropdown], 
                                        outputs=[raw_task_dropdown, raw_step_dropdown, raw_call_details])
                raw_task_dropdown.change(update_raw_step_dropdown, 
                                        inputs=[raw_agent_dropdown, raw_task_dropdown], 
                                        outputs=[raw_step_dropdown, raw_call_details])
                raw_step_dropdown.change(update_raw_call_details, 
                                        inputs=[raw_agent_dropdown, raw_task_dropdown, raw_step_dropdown], 
                                        outputs=[raw_call_details])
        
        
        with gr.Tab("MLAgentBench"):
            gr.Markdown("""MLAgentBench is a suite of end-to-end Machine Learning (ML) experimentation tasks, where the agent aims to take a given dataset and a machine learning task description and autonomously develop or improve an ML model. We are currently actively developing this platform and this benchmark is not fully implemented yet. In particular, we only include one agent and a subset of tasks for this benchmark.""")
            with gr.Row():
                with gr.Column(scale=2):
                    Leaderboard(
                        value=create_leaderboard(parse_json_files(os.path.join(abs_path, "evals_live"), 'mlagentbench')),
                        select_columns=SelectColumns(
                            default_selection=config.MLAGENTBENCH_ON_LOAD_COLUMNS + ["Verified"],
                            cant_deselect=["Agent Name"],
                            label="Select Columns to Display:",
                        ),
                        hide_columns=config.MLAGENTBENCH_HIDE_COLUMNS,
                        search_columns=config.MLAGENTBENCH_SEARCH_COLUMNS,
                    )
                    gr.Markdown("""*Error ranges span from the lowest to highest observed values in repeated runs.*""", elem_classes=["text-right"])
            with gr.Row():
                gr.Markdown("### Accuracy vs. Cost for MLAgentBench agents")
            with gr.Row():
                scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'mlagentbench', aggregate=False), "Total Cost", "Overall Score", "Total Cost (in USD)", "Overall Score", ["Agent Name"]))
            
            # gr.HTML('<div style="height: 30px;"></div>')
            # gr.Markdown("## Task success heatmap")
            # gr.Markdown("The task success heatmap shows which agent can solve which tasks. Agents are sorted by total accuracy (higher is better); tasks in USACO are sorted by decreasing order of difficulty (tasks on the left are solved by the most agents; tasks on the right are solved by the least. For agents that have been run more than once, the run with the highest score is shown.")
            # with gr.Row():
            #     task_success_heatmap = gr.Plot()
            # demo.load(
            # lambda: create_task_success_heatmap(
            #     preprocessor.get_task_success_data('usaco'),
            #     'USACO'
            # ),
            # outputs=[task_success_heatmap]
            # )

            gr.HTML("""
            <style>
                .grouped-section {
                    border: 2px solid #dee2e6; /* Color matching unactivated tabs */
                    border-radius: 10px;
                    padding: 30px;
                    margin-top: 40px;
                    margin-bottom: 40px;
                    position: relative;
                }

                .grouped-section-title {
                    font-size: 1.7em;
                    font-weight: bold;
                    color: #2c3e50;
                    margin-bottom: 20px;
                    padding-bottom: 10px;
                    border-bottom: 2px solid #dee2e6;
                }
            </style>
            """)
            with gr.Group(elem_classes=["grouped-section"]):
                gr.Markdown("# Agent monitor", elem_classes=["grouped-section-title"], elem_id="agent-monitor")

                # gr.HTML('<div style="height: 10px;"></div>')
                # gr.Markdown("## Failure report for each agent")
                # gr.Markdown('Select an agent to see why the agent fails to solve tasks correctly. Note that these descriptions (and the failure categories) are generated by LLM-based evaluations of the agent logs and may contain inaccuracies.')
                # gr.HTML('<div style="height: 10px;"></div>')
                # with gr.Row():
                #     with gr.Column(scale=1):
                #         failure_report_agent_dropdown = gr.Dropdown(label="Select Agent for Failure Report")
                # gr.HTML('<div style="height: 10px;"></div>')
                # with gr.Row():
                #     with gr.Column(scale=1):
                #         failure_categories_overview = gr.Markdown()
                
                #     with gr.Column(scale=1):
                #         failure_categories_chart = gr.Plot()

                # # Initialize the failure report agent dropdown with all agents
                # demo.load(update_agent_dropdown, 
                #         inputs=[gr.Textbox(value="mlagentbench", visible=False), gr.Textbox(value="Overall Score", visible=False)], 
                #         outputs=[failure_report_agent_dropdown])
                
                # # Update failure report when agent is selected
                # failure_report_agent_dropdown.change(update_failure_report,
                #                                     inputs=[failure_report_agent_dropdown, gr.Textbox(value="mlagentbench", visible=False)],
                #                                     outputs=[failure_categories_overview, failure_categories_chart])

                gr.HTML('<div style="height: 30px;"></div>')
                gr.Markdown("## Task overview")
                gr.HTML('<div style="height: 10px;"></div>')
                with gr.Row():
                    with gr.Column(scale=1):
                        agent_dropdown = gr.Dropdown(label="Select Agent")
                    with gr.Column(scale=1):
                        task_dropdown = gr.Dropdown(label="Select MLAgentBench Task")
                gr.HTML('<div style="height: 10px;"></div>')
                with gr.Row():
                    task_overview = gr.Markdown()
                with gr.Row():
                    flow_chart = gr.Plot(label="Task Flow")

                # Initialize the agent dropdown with the best agent
                demo.load(update_agent_dropdown, inputs=[gr.Textbox(value="mlagentbench", visible=False), gr.Textbox(value="Overall Score", visible=False)], outputs=[agent_dropdown])
                demo.load(update_task_analysis, inputs=[gr.Textbox(value="mlagentbench", visible=False), agent_dropdown], outputs=[task_overview, flow_chart, task_dropdown, gr.Textbox(visible=False)])

                agent_dropdown.change(update_task_analysis, 
                                    inputs=[gr.Textbox(value="mlagentbench", visible=False), agent_dropdown],
                                    outputs=[task_overview, flow_chart, task_dropdown, gr.Textbox(visible=False)])
                task_dropdown.change(update_task_details,
                                    inputs=[gr.Textbox(value="mlagentbench", visible=False), agent_dropdown, task_dropdown],
                                    outputs=[task_overview, flow_chart, gr.Textbox(visible=False)])
            
            gr.Markdown("## Raw predictions")
            gr.Markdown('Select an agent to see the raw predictions made by the agent for each task. We also provide information on token usage for each call.')
            with gr.Accordion("Expand to inspect raw predictions of agents...", open=False):
                with gr.Row():
                    with gr.Column(scale=1):
                        raw_agent_dropdown = gr.Dropdown(label="Select Agent")
                    with gr.Column(scale=1):
                        raw_task_dropdown = gr.Dropdown(label="Select Task")
                    with gr.Column(scale=1):
                        raw_step_dropdown = gr.Dropdown(label="Select Step")
                with gr.Row():
                    raw_call_details = gr.HTML()
                
                def update_raw_task_dropdown(agent_name):
                    analyzed_traces = get_analyzed_traces(agent_name, "mlagentbench")
                    if not analyzed_traces:
                        return gr.Dropdown(choices=[], label="Select Task"), gr.Dropdown(choices=[], label="Select Step"), f"No raw predictions data available for agent: {agent_name}."
                    task_ids = list(analyzed_traces.keys())
                    steps = analyzed_traces[task_ids[0]]['steps']
                    return gr.Dropdown(choices=task_ids, label="Select Task", value=task_ids[0]), gr.Dropdown(choices=[(f"Step {i+1}", i) for i in range(len(steps))], label="Select Step", value=0), format_call_info(get_analyzed_traces(agent_name, "mlagentbench")[task_ids[0]]['steps'][0], 0)

                def update_raw_step_dropdown(agent_name, task_id):
                    analyzed_traces = get_analyzed_traces(agent_name, "mlagentbench")
                    if not analyzed_traces or task_id not in analyzed_traces:
                        return gr.Dropdown(choices=[], label="Select Step", value="No data available.")
                    steps = analyzed_traces[task_id]['steps']
                    return gr.Dropdown(choices=[(f"Step {i+1}", i) for i in range(len(steps))], label="Select Step", value=0), format_call_info(steps[0], 0)

                def update_raw_call_details(agent_name, task_id, step_index):
                    analyzed_traces = get_analyzed_traces(agent_name, "mlagentbench")
                    if not analyzed_traces or task_id not in analyzed_traces:
                        return "No data available for this selection."
                    steps = analyzed_traces[task_id]['steps']
                    if step_index is None:
                        return "Invalid step selection."
                    step = steps[step_index]
                    return format_call_info(step, step_index)

                # Initialize the raw agent dropdown with all agents
                demo.load(update_agent_dropdown, 
                        inputs=[gr.Textbox(value="mlagentbench", visible=False), gr.Textbox(value="Overall Score", visible=False)], 
                        outputs=[raw_agent_dropdown])
                demo.load(update_raw_task_dropdown,
                        inputs=[raw_agent_dropdown],
                        outputs=[raw_task_dropdown, raw_step_dropdown])
                demo.load(update_raw_call_details,
                        inputs=[raw_agent_dropdown, raw_task_dropdown, raw_step_dropdown],
                        outputs=[raw_call_details])

                raw_agent_dropdown.change(update_raw_task_dropdown, 
                                        inputs=[raw_agent_dropdown], 
                                        outputs=[raw_task_dropdown, raw_step_dropdown, raw_call_details])
                raw_task_dropdown.change(update_raw_step_dropdown, 
                                        inputs=[raw_agent_dropdown, raw_task_dropdown], 
                                        outputs=[raw_step_dropdown, raw_call_details])
                raw_step_dropdown.change(update_raw_call_details, 
                                        inputs=[raw_agent_dropdown, raw_task_dropdown, raw_step_dropdown], 
                                        outputs=[raw_call_details])   
        
        with gr.Tab("About"):
            gr.Markdown((Path(__file__).parent / "about.md").read_text())

    # Will trigger autoscaling of plots when tabs are switched
    tabs.select(fn=None, inputs=None, outputs=None, js="""
        function() {
            setTimeout(function() {
                window.dispatchEvent(new Event('resize'));
            }, 100);
        }
    """)
    gr.HTML("""<h2 class="section-heading" id="agent-submission">How to add an agent to HAL leaderboards?</h2>""")
    gr.Markdown((Path(__file__).parent / "agent_submission.md").read_text())
    gr.HTML("""<h2 class="section-heading" id="benchmark-submission">How to add a benchmark to HAL?</h2>""")
    gr.Markdown((Path(__file__).parent / "benchmark_submission.md").read_text())
    gr.HTML("""<h2 class="section-heading" id="reproduction-guide">How can I run evaluations?</h2>""")
    gr.Markdown("""Coming soon...""")





async def main():
    # Preprocess traces
    # preprocessor = TracePreprocessor()
    # preprocessor.preprocess_traces('evals_live')
    # preprocessor = TracePreprocessor()
    
    # Download the results from the Hugging Face Hub
    # await asyncio.to_thread(download_latest_results)

    # # Check for new uploads and process them
    # await check_and_process_uploads()
    
    scheduler = AsyncIOScheduler()
    scheduler.add_job(restart_space, "interval", hours=1)
    # scheduler.add_job(download_latest_results, "interval", hours=1)
    # scheduler.add_job(check_and_process_uploads, "interval", hours=1)
    scheduler.start()
    
    await demo.launch(favicon_path="hal.png")

if __name__ == "__main__":
    weave.init(f'leaderboard_{datetime.now().strftime("%Y%m%d%H%M%S")}')
    asyncio.run(main())