File size: 5,499 Bytes
0b5b973
6ae1eee
0b5b973
 
 
 
3a0629c
0b5b973
 
 
3a0629c
 
b0c547a
3a0629c
26fdaed
3a0629c
0b5b973
3a0629c
 
 
 
0b5b973
 
b0c547a
 
3a0629c
 
 
0b5b973
 
 
 
 
b0c547a
0b5b973
 
b0c547a
0b5b973
 
 
 
 
6ae1eee
3a0629c
 
 
 
 
 
 
 
 
 
 
 
6ae1eee
3a0629c
 
9f8a599
 
 
3a0629c
 
 
b0c547a
3a0629c
 
 
 
 
 
 
 
 
 
 
 
 
b0c547a
3a0629c
b0c547a
 
 
 
 
 
 
 
 
 
 
 
 
 
3a0629c
b0c547a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a0629c
 
 
b0c547a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8a599
 
b0c547a
 
 
 
 
 
 
 
 
3a0629c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

import gradio as gr
import torch
import librosa
from pathlib import Path
import tempfile, torchaudio
from transformers import pipeline

# Load the MARS5 model
mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
asr_model = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-tiny",
    chunk_length_s=30,
    device=torch.device("cuda:0"),
)

def transcribe_file(f: str) -> str:
    predictions = asr_model(f, return_timestamps=True)["chunks"]
    print(f">>>>>.  predictions: {predictions}")
    return " ".join([prediction["text"] for prediction in predictions])

# Function to process the text and audio input and generate the synthesized output
def synthesize(text, audio_file, transcript, kwargs_dict):
    print(f">>>>>>> Kwargs dict: {kwargs_dict}")
    if not transcript:
        transcript = transcribe_file(audio_file)
        
    # Load the reference audio
    wav, sr = librosa.load(audio_file, sr=mars5.sr, mono=True)
    wav = torch.from_numpy(wav)
    
    # Define the configuration for the TTS model
    cfg = config_class(**kwargs_dict)
    
    # Generate the synthesized audio
    ar_codes, wav_out = mars5.tts(text, wav, transcript.strip(), cfg=cfg)
    
    # Save the synthesized audio to a temporary file
    output_path = Path(tempfile.mktemp(suffix=".wav"))
    torchaudio.save(output_path, wav_out.unsqueeze(0), mars5.sr)
    return str(output_path)

defaults = {
    'temperature': 0.8,
    'top_k': -1,
    'top_p': 0.2,
    'typical_p': 1.0,
    'freq_penalty': 2.6,
    'presence_penalty': 0.4,
    'rep_penalty_window': 100,
    'max_prompt_phones': 360,
    'deep_clone': True,
    'nar_guidance_w': 3
}


with gr.Blocks() as demo:
    link = "https://github.com/Camb-ai/MARS5-TTS"
    gr.Markdown("## MARS5 TTS Demo\nEnter text and upload an audio file to clone the voice and generate synthesized speech using **[MARS5-TTS]({link})**")
    
    text = gr.Textbox(label="Text to synthesize")
    audio_file = gr.Audio(label="Audio file to clone from", type="filepath")
    
    generate_btn = gr.Button("Generate Synthesized Audio")

    with gr.Accordion("Advanced Settings", open=False):
        gr.Markdown("additional inference settings\nWARNING: changing these incorrectly may degrade quality.")
        prompt_text = gr.Textbox(label="Transcript of voice reference")
        temperature = gr.Slider(minimum=0.01, maximum=3, step=0.01, label="temperature", value=defaults['temperature'])
        top_k = gr.Slider(minimum=-1, maximum=2000, step=1, label="top_k", value=defaults['top_k'])
        top_p = gr.Slider(minimum=0.01, maximum=1.0, step=0.01, label="top_p", value=defaults['top_p'])
        typical_p = gr.Slider(minimum=0.01, maximum=1, step=0.01, label="typical_p", value=defaults['typical_p'])
        freq_penalty = gr.Slider(minimum=0, maximum=5, step=0.05, label="freq_penalty", value=defaults['freq_penalty'])
        presence_penalty = gr.Slider(minimum=0, maximum=5, step=0.05, label="presence_penalty", value=defaults['presence_penalty'])
        rep_penalty_window = gr.Slider(minimum=1, maximum=500, step=1, label="rep_penalty_window", value=defaults['rep_penalty_window'])
        nar_guidance_w = gr.Slider(minimum=1, maximum=8, step=0.1, label="nar_guidance_w", value=defaults['nar_guidance_w'])
        deep_clone = gr.Checkbox(value=defaults['deep_clone'], label='deep_clone')
        
    output = gr.Audio(label="Synthesized Audio", type="filepath")
    def on_click(
        text,
        audio_file,
        prompt_text,
        temperature,
        top_k,
        top_p,
        typical_p,
        freq_penalty,
        presence_penalty,
        rep_penalty_window,
        nar_guidance_w,
        deep_clone
    ):
        print(f">>>> transcript: {prompt_text}; audio_file = {audio_file}")
        of = synthesize(
            text,
            audio_file,
            prompt_text,
            {
                'temperature': temperature,
                'top_k': top_k,
                'top_p': top_p,
                'typical_p': typical_p,
                'freq_penalty': freq_penalty,
                'presence_penalty': presence_penalty,
                'rep_penalty_window': rep_penalty_window,
                'nar_guidance_w': nar_guidance_w,
                'deep_clone': deep_clone
            }
        )
        print(f">>>> output file: {of}")
        return of

    generate_btn.click(
        on_click,
        inputs=[
            text,
            audio_file,
            prompt_text,
            temperature,
            top_k,
            top_p,
            typical_p,
            freq_penalty,
            presence_penalty,
            rep_penalty_window,
            nar_guidance_w,
            deep_clone
        ],
        outputs=[output]
    )

    # Add examples
    defaults = [0.8, -1, 0.2, 1.0, 2.6, 0.4, 100, 3, True]
    examples = [
        ["Can you please go there and figure it out?", "female_speaker_1.flac", "People look, but no one ever finds it.", *defaults],
        ["Hey, do you need my help?", "male_speaker_1.flac", "Ask her to bring these things with her from the store.", *defaults]
    ]
    
    gr.Examples(
        examples=examples,
        inputs=[text, audio_file, prompt_text, temperature, top_k, top_p, typical_p, freq_penalty, presence_penalty, rep_penalty_window, nar_guidance_w, deep_clone],
        outputs=[output],
        cache_examples=False,
        fn=on_click    
    )
    
demo.launch(share=False)