File size: 5,219 Bytes
0691d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models.vgg import vgg16

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class L_color(nn.Module):
    def __init__(self):
        super(L_color, self).__init__()

    def forward(self, x ):
        b,c,h,w = x.shape

        mean_rgb = torch.mean(x, [2, 3], keepdim=True)
        mr, mg, mb = torch.split(mean_rgb, 1, dim=1)
        Drg = torch.pow(mr-mg, 4)
        Drb = torch.pow(mr-mb, 4)
        Dgb = torch.pow(mb-mg, 4)

        return torch.sqrt(Drg + Drb + Dgb)

			
class L_spa(nn.Module):
    def __init__(self):
        super(L_spa, self).__init__()
        kernel_left = torch.tensor( [[0,0,0], [-1,1,0], [0,0,0]], dtype=torch.float, device=device).unsqueeze(0).unsqueeze(0)
        kernel_right = torch.tensor( [[0,0,0], [0,1,-1], [0,0,0]], dtype=torch.float, device=device).unsqueeze(0).unsqueeze(0)
        kernel_up = torch.tensor( [[0,-1,0], [0,1,0], [0,0,0]], dtype=torch.float, device=device).unsqueeze(0).unsqueeze(0)
        kernel_down = torch.tensor( [[0,0,0], [0,1,0], [0,-1,0]], dtype=torch.float, device=device).unsqueeze(0).unsqueeze(0)

        self.weight_left = nn.Parameter(data=kernel_left, requires_grad=False)
        self.weight_right = nn.Parameter(data=kernel_right, requires_grad=False)
        self.weight_up = nn.Parameter(data=kernel_up, requires_grad=False)
        self.weight_down = nn.Parameter(data=kernel_down, requires_grad=False)
        self.pool = nn.AvgPool2d(4)
    
    def forward(self, org , enhance ):
        b,c,h,w = org.shape

        org_mean = torch.mean(org, 1, keepdim=True)
        enhance_mean = torch.mean(enhance, 1, keepdim=True)

        org_pool =  self.pool(org_mean)	
        enhance_pool = self.pool(enhance_mean)

        D_org_letf = F.conv2d(org_pool , self.weight_left, padding=1)
        D_org_right = F.conv2d(org_pool , self.weight_right, padding=1)
        D_org_up = F.conv2d(org_pool , self.weight_up, padding=1)
        D_org_down = F.conv2d(org_pool , self.weight_down, padding=1)

        D_enhance_letf = F.conv2d(enhance_pool , self.weight_left, padding=1)
        D_enhance_right = F.conv2d(enhance_pool , self.weight_right, padding=1)
        D_enhance_up = F.conv2d(enhance_pool , self.weight_up, padding=1)
        D_enhance_down = F.conv2d(enhance_pool , self.weight_down, padding=1)

        D_left = torch.pow(D_org_letf - D_enhance_letf,2)
        D_right = torch.pow(D_org_right - D_enhance_right,2)
        D_up = torch.pow(D_org_up - D_enhance_up,2)
        D_down = torch.pow(D_org_down - D_enhance_down,2)
        E = (D_left + D_right + D_up +D_down)
        # E = 25*(D_left + D_right + D_up +D_down)

        return E

class L_exp(nn.Module):
    def __init__(self,patch_size):
        super(L_exp, self).__init__()
        self.pool = nn.AvgPool2d(patch_size)
        # self.mean_val = mean_val
    def forward(self, x, mean_val):
        b,c,h,w = x.shape
        x = torch.mean(x,1,keepdim=True)
        mean = self.pool(x)

        d = torch.mean(torch.pow(mean - torch.tensor([mean_val], dtype=torch.float, device=device).to(), 2))
        return d
        
class L_TV(nn.Module):
    def __init__(self,TVLoss_weight=1):
        super(L_TV,self).__init__()
        self.TVLoss_weight = TVLoss_weight

    def forward(self,x):
        batch_size = x.size()[0]
        h_x = x.size()[2]
        w_x = x.size()[3]
        count_h =  (x.size()[2]-1) * x.size()[3]
        count_w = x.size()[2] * (x.size()[3] - 1)
        h_tv = torch.pow((x[:,:,1:,:] - x[:,:,:h_x-1,:]),2).sum()
        w_tv = torch.pow((x[:,:,:,1:] - x[:,:,:,:w_x-1]),2).sum()
        return self.TVLoss_weight*2*(h_tv / count_h + w_tv / count_w) / batch_size

class Sa_Loss(nn.Module):
    def __init__(self):
        super(Sa_Loss, self).__init__()

    def forward(self, x ):
        b,c,h,w = x.shape
        # x_de = x.cpu().detach().numpy()
        r,g,b = torch.split(x , 1, dim=1)
        mean_rgb = torch.mean(x,[2,3],keepdim=True)
        mr,mg, mb = torch.split(mean_rgb, 1, dim=1)
        Dr = r-mr
        Dg = g-mg
        Db = b-mb
        k =torch.pow( torch.pow(Dr,2) + torch.pow(Db,2) + torch.pow(Dg,2),0.5)

        k = torch.mean(k)
        return k

class perception_loss(nn.Module):
    def __init__(self):
        super(perception_loss, self).__init__()
        features = vgg16(pretrained=True).features
        self.to_relu_1_2 = nn.Sequential()
        self.to_relu_2_2 = nn.Sequential()
        self.to_relu_3_3 = nn.Sequential()
        self.to_relu_4_3 = nn.Sequential()

        for x in range(4):
            self.to_relu_1_2.add_module(str(x), features[x])
        for x in range(4, 9):
            self.to_relu_2_2.add_module(str(x), features[x])
        for x in range(9, 16):
            self.to_relu_3_3.add_module(str(x), features[x])
        for x in range(16, 23):
            self.to_relu_4_3.add_module(str(x), features[x])
        
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, x):
        h = self.to_relu_1_2(x)
        h = self.to_relu_2_2(h)
        h = self.to_relu_3_3(h)
        h = self.to_relu_4_3(h)
        
        return h