File size: 18,758 Bytes
4bdb245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
#include "cpy.cuh"

typedef void (*cpy_kernel_t)(const char * cx, char * cdst);

static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
    const float * xi = (const float *) cxi;
    float * dsti = (float *) cdsti;

    *dsti = *xi;
}

static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
    const float * xi = (const float *) cxi;
    half * dsti = (half *) cdsti;

    *dsti = __float2half(*xi);
}

static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
    const half * xi = (const half *) cxi;
    half * dsti = (half *) cdsti;

    *dsti = *xi;
}

static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
    const half * xi = (const half *) cxi;
    float * dsti = (float *) cdsti;

    *dsti = *xi;
}

template <cpy_kernel_t cpy_1>
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
                                   const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
                                   const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
                                   const int nb12, const int nb13) {
    const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= ne) {
        return;
    }

    // determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
    // then combine those indices with the corresponding byte offsets to get the total offsets
    const int64_t i03 = i/(ne00 * ne01 * ne02);
    const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
    const int64_t i01 = (i - i03*ne00*ne01*ne02  -  i02*ne01*ne00) / ne00;
    const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
    const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;

    const int64_t i13 = i/(ne10 * ne11 * ne12);
    const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
    const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
    const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
    const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;

    cpy_1(cx + x_offset, cdst + dst_offset);
}

static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
    const float * xi = (const float *) cxi;
    block_q8_0 * dsti = (block_q8_0 *) cdsti;

    float amax = 0.0f; // absolute max

    for (int j = 0; j < QK8_0; j++) {
        const float v = xi[j];
        amax = fmaxf(amax, fabsf(v));
    }

    const float d = amax / ((1 << 7) - 1);
    const float id = d ? 1.0f/d : 0.0f;

    dsti->d = d;

    for (int j = 0; j < QK8_0; ++j) {
        const float x0 = xi[j]*id;

        dsti->qs[j] = roundf(x0);
    }
}

static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
    const float * xi = (const float *) cxi;
    block_q4_0 * dsti = (block_q4_0 *) cdsti;

    float amax = 0.0f;
    float vmax = 0.0f;

    for (int j = 0; j < QK4_0; ++j) {
        const float v = xi[j];
        if (amax < fabsf(v)) {
            amax = fabsf(v);
            vmax = v;
        }
    }

    const float d  = vmax / -8;
    const float id = d ? 1.0f/d : 0.0f;

    dsti->d = d;

    for (int j = 0; j < QK4_0/2; ++j) {
        const float x0 = xi[0       + j]*id;
        const float x1 = xi[QK4_0/2 + j]*id;

        const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
        const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));

        dsti->qs[j]  = xi0;
        dsti->qs[j] |= xi1 << 4;
    }
}

static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
    const float * xi = (const float *) cxi;
    block_q4_1 * dsti = (block_q4_1 *) cdsti;

    float vmin = FLT_MAX;
    float vmax = -FLT_MAX;

    for (int j = 0; j < QK4_1; ++j) {
        const float v = xi[j];

        if (v < vmin) vmin = v;
        if (v > vmax) vmax = v;
    }

    const float d  = (vmax - vmin) / ((1 << 4) - 1);
    const float id = d ? 1.0f/d : 0.0f;

    dsti->dm.x = d;
    dsti->dm.y = vmin;

    for (int j = 0; j < QK4_1/2; ++j) {
        const float x0 = (xi[0       + j] - vmin)*id;
        const float x1 = (xi[QK4_1/2 + j] - vmin)*id;

        const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
        const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));

        dsti->qs[j]  = xi0;
        dsti->qs[j] |= xi1 << 4;
    }
}

static __device__ void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) {
    const float * xi = (const float *) cxi;
    block_q5_0 * dsti = (block_q5_0 *) cdsti;

    float amax = 0.0f;
    float vmax = 0.0f;

    for (int j = 0; j < QK5_0; ++j) {
        const float v = xi[j];
        if (amax < fabsf(v)) {
            amax = fabsf(v);
            vmax = v;
        }
    }

    const float d  = vmax / -16;
    const float id = d ? 1.0f/d : 0.0f;

    dsti->d = d;

    uint32_t qh = 0;
    for (int j = 0; j < QK5_0/2; ++j) {
        const float x0 = xi[0       + j]*id;
        const float x1 = xi[QK5_0/2 + j]*id;

        const uint8_t xi0 = min(31, (int8_t)(x0 + 16.5f));
        const uint8_t xi1 = min(31, (int8_t)(x1 + 16.5f));

        dsti->qs[j]  = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
        qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
        qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
    }
    memcpy(dsti->qh, &qh, sizeof(qh));
}

static __device__ void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) {
    const float * xi = (const float *) cxi;
    block_q5_1 * dsti = (block_q5_1 *) cdsti;

    float min = xi[0];
    float max = xi[0];

    for (int j = 1; j < QK5_1; ++j) {
        const float v = xi[j];
        min = v < min ? v : min;
        max = v > max ? v : max;
    }

    const float d  = (max - min) / 31;
    const float id = d ? 1.0f/d : 0.0f;

    dsti->dm.x = d;
    dsti->dm.y = min;

    uint32_t qh = 0;
    for (int j = 0; j < QK5_1/2; ++j) {
        const float x0 = (xi[0       + j] - min)*id;
        const float x1 = (xi[QK5_1/2 + j] - min)*id;

        const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
        const uint8_t xi1 = (uint8_t)(x1 + 0.5f);

        dsti->qs[j]  = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
        qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
        qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
    }
    memcpy(dsti->qh, &qh, sizeof(qh));
}


static __device__ __forceinline__ int best_index_int8(int n, const int8_t * val, float x) {
    if (x <= val[0]) return 0;
    if (x >= val[n-1]) return n-1;
    int ml = 0, mu = n-1;
    while (mu-ml > 1) {
        int mav = (ml+mu)/2;
        if (x < val[mav]) mu = mav; else ml = mav;
    }
    return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
}

static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
    const float * xi = (const float *) cxi;
    block_iq4_nl * dsti = (block_iq4_nl *) cdsti;

    float amax = 0.0f;
    float vmax = 0.0f;

    for (int j = 0; j < QK4_NL; ++j) {
        const float v = xi[j];
        if (amax < fabsf(v)) {
            amax = fabsf(v);
            vmax = v;
        }
    }

    float d = vmax / kvalues_iq4nl[0];
    const float id = d ? 1.0f/d : 0.0f;

    float sumqx = 0, sumq2 = 0;
    for (int j = 0; j < QK4_NL/2; ++j) {
        const float x0 = xi[0        + j]*id;
        const float x1 = xi[QK4_NL/2 + j]*id;
        const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0);
        const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1);
        dsti->qs[j] = xi0 | (xi1 << 4);
        const float v0 = kvalues_iq4nl[xi0];
        const float v1 = kvalues_iq4nl[xi1];
        const float w0 = xi[0        + j]*xi[0        + j];
        const float w1 = xi[QK4_NL/2 + j]*xi[QK4_NL/2 + j];
        sumqx += w0*v0*xi[j] + w1*v1*xi[QK4_NL/2 + j];
        sumq2 += w0*v0*v0 + w1*v1*v1;
    }

    dsti->d = sumq2 > 0 ? sumqx/sumq2 : d;
}

template <cpy_kernel_t cpy_blck, int qk>
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
                                 const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
                                 const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
                                 const int nb12, const int nb13) {
    const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;

    if (i >= ne) {
        return;
    }

    const int i03 = i/(ne00 * ne01 * ne02);
    const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
    const int i01 = (i - i03*ne00*ne01*ne02  -  i02*ne01*ne00) / ne00;
    const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
    const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;

    const int i13 = i/(ne10 * ne11 * ne12);
    const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
    const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
    const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
    const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;

    cpy_blck(cx + x_offset, cdst + dst_offset);
}

static void ggml_cpy_f16_f32_cuda(
    const char * cx, char * cdst, const int ne,
    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {

    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
    cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}

static void ggml_cpy_f32_f32_cuda(
    const char * cx, char * cdst, const int ne,
    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {

    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
    cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}

static void ggml_cpy_f32_f16_cuda(
    const char * cx, char * cdst, const int ne,
    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {

    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
    cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}

static void ggml_cpy_f32_q8_0_cuda(
    const char * cx, char * cdst, const int ne,
    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {

    GGML_ASSERT(ne % QK8_0 == 0);
    const int num_blocks = ne / QK8_0;
    cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}

static void ggml_cpy_f32_q4_0_cuda(
    const char * cx, char * cdst, const int ne,
    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {

    GGML_ASSERT(ne % QK4_0 == 0);
    const int num_blocks = ne / QK4_0;
    cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}

static void ggml_cpy_f32_q4_1_cuda(
    const char * cx, char * cdst, const int ne,
    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {

    GGML_ASSERT(ne % QK4_1 == 0);
    const int num_blocks = ne / QK4_1;
    cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}

static void ggml_cpy_f32_q5_0_cuda(
    const char * cx, char * cdst, const int ne,
    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {

    GGML_ASSERT(ne % QK5_0 == 0);
    const int num_blocks = ne / QK5_0;
    cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}

static void ggml_cpy_f32_q5_1_cuda(
    const char * cx, char * cdst, const int ne,
    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {

    GGML_ASSERT(ne % QK5_1 == 0);
    const int num_blocks = ne / QK5_1;
    cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}

static void ggml_cpy_f32_iq4_nl_cuda(
    const char * cx, char * cdst, const int ne,
    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {

    GGML_ASSERT(ne % QK4_NL == 0);
    const int num_blocks = ne / QK4_NL;
    cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}

static void ggml_cpy_f16_f16_cuda(
    const char * cx, char * cdst, const int ne,
    const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
    const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {

    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
    cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
        (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}

void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1) {
    const int64_t ne = ggml_nelements(src0);
    GGML_ASSERT(ne == ggml_nelements(src1));

    GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
    GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];

    //GGML_ASSERT(src0->ne[3] == 1);

    const int64_t nb00 = src0->nb[0];
    const int64_t nb01 = src0->nb[1];
    const int64_t nb02 = src0->nb[2];
    const int64_t nb03 = src0->nb[3];

    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];
    const int64_t ne12 = src1->ne[2];

    //GGML_ASSERT(src1->ne[3] == 1);

    const int64_t nb10 = src1->nb[0];
    const int64_t nb11 = src1->nb[1];
    const int64_t nb12 = src1->nb[2];
    const int64_t nb13 = src1->nb[3];

    cudaStream_t main_stream = ctx.stream();

    char * src0_ddc = (char *) src0->data;
    char * src1_ddc = (char *) src1->data;

    if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
        ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
        ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
        ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
        ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
        ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
        ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
        ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
        ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
    } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
        ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
    } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
        ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
    } else {
        fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
                ggml_type_name(src0->type), ggml_type_name(src1->type));
        GGML_ASSERT(false);
    }
}

void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    ggml_cuda_cpy(ctx, src0, dst);
}