Spaces:
Runtime error
Runtime error
File size: 5,215 Bytes
4bdb245 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import logging
import tempfile
from pathlib import Path
from typing import TYPE_CHECKING, AnyStr, BinaryIO
from injector import inject, singleton
from llama_index.core.node_parser import SentenceWindowNodeParser
from llama_index.core.storage import StorageContext
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
from private_gpt.components.ingest.ingest_component import get_ingestion_component
from private_gpt.components.llm.llm_component import LLMComponent
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
from private_gpt.components.vector_store.vector_store_component import (
VectorStoreComponent,
)
from private_gpt.server.ingest.model import IngestedDoc
from private_gpt.settings.settings import settings
if TYPE_CHECKING:
from llama_index.core.storage.docstore.types import RefDocInfo
logger = logging.getLogger(__name__)
@singleton
class IngestService:
@inject
def __init__(
self,
llm_component: LLMComponent,
vector_store_component: VectorStoreComponent,
embedding_component: EmbeddingComponent,
node_store_component: NodeStoreComponent,
) -> None:
self.llm_service = llm_component
self.storage_context = StorageContext.from_defaults(
vector_store=vector_store_component.vector_store,
docstore=node_store_component.doc_store,
index_store=node_store_component.index_store,
)
node_parser = SentenceWindowNodeParser.from_defaults()
self.ingest_component = get_ingestion_component(
self.storage_context,
embed_model=embedding_component.embedding_model,
transformations=[node_parser, embedding_component.embedding_model],
settings=settings(),
)
def _ingest_data(self, file_name: str, file_data: AnyStr) -> list[IngestedDoc]:
logger.debug("Got file data of size=%s to ingest", len(file_data))
# llama-index mainly supports reading from files, so
# we have to create a tmp file to read for it to work
# delete=False to avoid a Windows 11 permission error.
with tempfile.NamedTemporaryFile(delete=False) as tmp:
try:
path_to_tmp = Path(tmp.name)
if isinstance(file_data, bytes):
path_to_tmp.write_bytes(file_data)
else:
path_to_tmp.write_text(str(file_data))
return self.ingest_file(file_name, path_to_tmp)
finally:
tmp.close()
path_to_tmp.unlink()
def ingest_file(self, file_name: str, file_data: Path) -> list[IngestedDoc]:
logger.info("Ingesting file_name=%s", file_name)
documents = self.ingest_component.ingest(file_name, file_data)
logger.info("Finished ingestion file_name=%s", file_name)
return [IngestedDoc.from_document(document) for document in documents]
def ingest_text(self, file_name: str, text: str) -> list[IngestedDoc]:
logger.debug("Ingesting text data with file_name=%s", file_name)
return self._ingest_data(file_name, text)
def ingest_bin_data(
self, file_name: str, raw_file_data: BinaryIO
) -> list[IngestedDoc]:
logger.debug("Ingesting binary data with file_name=%s", file_name)
file_data = raw_file_data.read()
return self._ingest_data(file_name, file_data)
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[IngestedDoc]:
logger.info("Ingesting file_names=%s", [f[0] for f in files])
documents = self.ingest_component.bulk_ingest(files)
logger.info("Finished ingestion file_name=%s", [f[0] for f in files])
return [IngestedDoc.from_document(document) for document in documents]
def list_ingested(self) -> list[IngestedDoc]:
ingested_docs: list[IngestedDoc] = []
try:
docstore = self.storage_context.docstore
ref_docs: dict[str, RefDocInfo] | None = docstore.get_all_ref_doc_info()
if not ref_docs:
return ingested_docs
for doc_id, ref_doc_info in ref_docs.items():
doc_metadata = None
if ref_doc_info is not None and ref_doc_info.metadata is not None:
doc_metadata = IngestedDoc.curate_metadata(ref_doc_info.metadata)
ingested_docs.append(
IngestedDoc(
object="ingest.document",
doc_id=doc_id,
doc_metadata=doc_metadata,
)
)
except ValueError:
logger.warning("Got an exception when getting list of docs", exc_info=True)
pass
logger.debug("Found count=%s ingested documents", len(ingested_docs))
return ingested_docs
def delete(self, doc_id: str) -> None:
"""Delete an ingested document.
:raises ValueError: if the document does not exist
"""
logger.info(
"Deleting the ingested document=%s in the doc and index store", doc_id
)
self.ingest_component.delete(doc_id)
|