File size: 120,133 Bytes
4bdb245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
from __future__ import annotations

import sys
import os
import ctypes
import functools
import pathlib

from typing import (
    Any,
    Callable,
    List,
    Union,
    NewType,
    Optional,
    TYPE_CHECKING,
    TypeVar,
    Generic,
)
from typing_extensions import TypeAlias


# Load the library
def _load_shared_library(lib_base_name: str):
    # Construct the paths to the possible shared library names
    _base_path = pathlib.Path(os.path.abspath(os.path.dirname(__file__)))
    # Searching for the library in the current directory under the name "libllama" (default name
    # for llamacpp) and "llama" (default name for this repo)
    _lib_paths: List[pathlib.Path] = []
    # Determine the file extension based on the platform
    if sys.platform.startswith("linux"):
        _lib_paths += [
            _base_path / f"lib{lib_base_name}.so",
        ]
    elif sys.platform == "darwin":
        _lib_paths += [
            _base_path / f"lib{lib_base_name}.so",
            _base_path / f"lib{lib_base_name}.dylib",
        ]
    elif sys.platform == "win32":
        _lib_paths += [
            _base_path / f"{lib_base_name}.dll",
            _base_path / f"lib{lib_base_name}.dll",
        ]
    else:
        raise RuntimeError("Unsupported platform")

    if "LLAMA_CPP_LIB" in os.environ:
        lib_base_name = os.environ["LLAMA_CPP_LIB"]
        _lib = pathlib.Path(lib_base_name)
        _base_path = _lib.parent.resolve()
        _lib_paths = [_lib.resolve()]

    cdll_args = dict()  # type: ignore
    # Add the library directory to the DLL search path on Windows (if needed)
    if sys.platform == "win32" and sys.version_info >= (3, 8):
        os.add_dll_directory(str(_base_path))
        if "CUDA_PATH" in os.environ:
            os.add_dll_directory(os.path.join(os.environ["CUDA_PATH"], "bin"))
            os.add_dll_directory(os.path.join(os.environ["CUDA_PATH"], "lib"))
        if "HIP_PATH" in os.environ:
            os.add_dll_directory(os.path.join(os.environ["HIP_PATH"], "bin"))
            os.add_dll_directory(os.path.join(os.environ["HIP_PATH"], "lib"))
        cdll_args["winmode"] = ctypes.RTLD_GLOBAL

    # Try to load the shared library, handling potential errors
    for _lib_path in _lib_paths:
        if _lib_path.exists():
            try:
                return ctypes.CDLL(str(_lib_path), **cdll_args)  # type: ignore
            except Exception as e:
                raise RuntimeError(f"Failed to load shared library '{_lib_path}': {e}")

    raise FileNotFoundError(
        f"Shared library with base name '{lib_base_name}' not found"
    )


# Specify the base name of the shared library to load
_lib_base_name = "llama"

# Load the library
_lib = _load_shared_library(_lib_base_name)


# ctypes sane type hint helpers
#
# - Generic Pointer and Array types
# - PointerOrRef type with a type hinted byref function
#
# NOTE: Only use these for static type checking not for runtime checks
# no good will come of that

if TYPE_CHECKING:
    CtypesCData = TypeVar("CtypesCData", bound=ctypes._CData)  # type: ignore

    CtypesArray: TypeAlias = ctypes.Array[CtypesCData]  # type: ignore

    CtypesPointer: TypeAlias = ctypes._Pointer[CtypesCData]  # type: ignore

    CtypesVoidPointer: TypeAlias = ctypes.c_void_p

    class CtypesRef(Generic[CtypesCData]):
        pass

    CtypesPointerOrRef: TypeAlias = Union[
        CtypesPointer[CtypesCData], CtypesRef[CtypesCData]
    ]

    CtypesFuncPointer: TypeAlias = ctypes._FuncPointer  # type: ignore

F = TypeVar("F", bound=Callable[..., Any])


def ctypes_function_for_shared_library(lib: ctypes.CDLL):
    def ctypes_function(
        name: str, argtypes: List[Any], restype: Any, enabled: bool = True
    ):
        def decorator(f: F) -> F:
            if enabled:
                func = getattr(lib, name)
                func.argtypes = argtypes
                func.restype = restype
                functools.wraps(f)(func)
                return func
            else:
                return f

        return decorator

    return ctypes_function


ctypes_function = ctypes_function_for_shared_library(_lib)


def byref(obj: CtypesCData, offset: Optional[int] = None) -> CtypesRef[CtypesCData]:
    """Type-annotated version of ctypes.byref"""
    ...


byref = ctypes.byref  # type: ignore

# from ggml.h
# // NOTE: always add types at the end of the enum to keep backward compatibility
# enum ggml_type {
#     GGML_TYPE_F32     = 0,
#     GGML_TYPE_F16     = 1,
#     GGML_TYPE_Q4_0    = 2,
#     GGML_TYPE_Q4_1    = 3,
#     // GGML_TYPE_Q4_2 = 4, support has been removed
#     // GGML_TYPE_Q4_3 = 5, support has been removed
#     GGML_TYPE_Q5_0    = 6,
#     GGML_TYPE_Q5_1    = 7,
#     GGML_TYPE_Q8_0    = 8,
#     GGML_TYPE_Q8_1    = 9,
#     GGML_TYPE_Q2_K    = 10,
#     GGML_TYPE_Q3_K    = 11,
#     GGML_TYPE_Q4_K    = 12,
#     GGML_TYPE_Q5_K    = 13,
#     GGML_TYPE_Q6_K    = 14,
#     GGML_TYPE_Q8_K    = 15,
#     GGML_TYPE_IQ2_XXS = 16,
#     GGML_TYPE_IQ2_XS  = 17,
#     GGML_TYPE_IQ3_XXS = 18,
#     GGML_TYPE_IQ1_S   = 19,
#     GGML_TYPE_IQ4_NL  = 20,
#     GGML_TYPE_IQ3_S   = 21,
#     GGML_TYPE_IQ2_S   = 22,
#     GGML_TYPE_IQ4_XS  = 23,
#     GGML_TYPE_I8      = 24,
#     GGML_TYPE_I16     = 25,
#     GGML_TYPE_I32     = 26,
#     GGML_TYPE_I64     = 27,
#     GGML_TYPE_F64     = 28,
#     GGML_TYPE_IQ1_M   = 29,
#     GGML_TYPE_COUNT,
# };
GGML_TYPE_F32 = 0
GGML_TYPE_F16 = 1
GGML_TYPE_Q4_0 = 2
GGML_TYPE_Q4_1 = 3
GGML_TYPE_Q5_0 = 6
GGML_TYPE_Q5_1 = 7
GGML_TYPE_Q8_0 = 8
GGML_TYPE_Q8_1 = 9
GGML_TYPE_Q2_K = 10
GGML_TYPE_Q3_K = 11
GGML_TYPE_Q4_K = 12
GGML_TYPE_Q5_K = 13
GGML_TYPE_Q6_K = 14
GGML_TYPE_Q8_K = 15
GGML_TYPE_IQ2_XXS = 16
GGML_TYPE_IQ2_XS = 17
GGML_TYPE_IQ3_XXS = 18
GGML_TYPE_IQ1_S = 19
GGML_TYPE_IQ4_NL = 20
GGML_TYPE_IQ3_S = 21
GGML_TYPE_IQ2_S = 22
GGML_TYPE_IQ4_XS = 23
GGML_TYPE_I8 = 24
GGML_TYPE_I16 = 25
GGML_TYPE_I32 = 26
GGML_TYPE_I64 = 27
GGML_TYPE_F64 = 28
GGML_TYPE_IQ1_M = 29
GGML_TYPE_COUNT = 30

# from ggml-backend.h
# typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
ggml_backend_sched_eval_callback = ctypes.CFUNCTYPE(
    ctypes.c_bool, ctypes.c_void_p, ctypes.c_bool, ctypes.c_void_p
)

# // Abort callback
# // If not NULL, called before ggml computation
# // If it returns true, the computation is aborted
# typedef bool (*ggml_abort_callback)(void * data);
ggml_abort_callback = ctypes.CFUNCTYPE(ctypes.c_bool, ctypes.c_void_p)

# llama.h bindings

_lib.llama_max_devices.argtypes = []
_lib.llama_max_devices.restype = ctypes.c_size_t

LLAMA_MAX_DEVICES = _lib.llama_max_devices()

# define LLAMA_DEFAULT_SEED 0xFFFFFFFF
LLAMA_DEFAULT_SEED = 0xFFFFFFFF

# define LLAMA_MAX_RNG_STATE (64*1024)
LLAMA_MAX_RNG_STATE = 64 * 1024

# define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
LLAMA_FILE_MAGIC_GGLA = 0x67676C61

# define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
LLAMA_FILE_MAGIC_GGSN = 0x6767736E

# define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
LLAMA_FILE_MAGIC_GGSQ = 0x67677371

# define LLAMA_SESSION_MAGIC   LLAMA_FILE_MAGIC_GGSN
LLAMA_SESSION_MAGIC = LLAMA_FILE_MAGIC_GGSN
# define LLAMA_SESSION_VERSION 6
LLAMA_SESSION_VERSION = 6

# define LLAMA_STATE_SEQ_MAGIC   LLAMA_FILE_MAGIC_GGSQ
LLAMA_STATE_SEQ_MAGIC = LLAMA_FILE_MAGIC_GGSQ
# define LLAMA_STATE_SEQ_VERSION 1
LLAMA_STATE_SEQ_VERSION = 1

# struct llama_model;
llama_model_p = NewType("llama_model_p", int)
llama_model_p_ctypes = ctypes.c_void_p

# struct llama_context;
llama_context_p = NewType("llama_context_p", int)
llama_context_p_ctypes = ctypes.c_void_p


# typedef int32_t llama_pos;
llama_pos = ctypes.c_int32
# typedef int32_t llama_token;
llama_token = ctypes.c_int32
llama_token_p = ctypes.POINTER(llama_token)
# typedef int32_t llama_seq_id;
llama_seq_id = ctypes.c_int32


# enum llama_vocab_type {
#     LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
#     LLAMA_VOCAB_TYPE_SPM  = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
#     LLAMA_VOCAB_TYPE_BPE  = 2, // GPT-2 tokenizer based on byte-level BPE
#     LLAMA_VOCAB_TYPE_WPM  = 3, // BERT tokenizer based on WordPiece
# };
LLAMA_VOCAB_TYPE_NONE = 0
"""For models without vocab"""
LLAMA_VOCAB_TYPE_SPM = 1
"""LLaMA tokenizer based on byte-level BPE with byte fallback"""
LLAMA_VOCAB_TYPE_BPE = 2
"""GPT-2 tokenizer based on byte-level BPE"""
LLAMA_VOCAB_TYPE_WPM = 3
"""BERT tokenizer based on WordPiece"""


# // pre-tokenization types
# enum llama_vocab_pre_type {
#     LLAMA_VOCAB_PRE_TYPE_DEFAULT        = 0,
#     LLAMA_VOCAB_PRE_TYPE_LLAMA3         = 1,
#     LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM   = 2,
#     LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
#     LLAMA_VOCAB_PRE_TYPE_FALCON         = 4,
#     LLAMA_VOCAB_PRE_TYPE_MPT            = 5,
#     LLAMA_VOCAB_PRE_TYPE_STARCODER      = 6,
#     LLAMA_VOCAB_PRE_TYPE_GPT2           = 7,
# };
LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0
LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3
LLAMA_VOCAB_PRE_TYPE_FALCON = 4
LLAMA_VOCAB_PRE_TYPE_MPT = 5
LLAMA_VOCAB_PRE_TYPE_STARCODER = 6
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7


# // note: these values should be synchronized with ggml_rope
# // TODO: maybe move this enum to ggml.h (ggml_rope_type)
# enum llama_rope_type {
#     LLAMA_ROPE_TYPE_NONE = -1,
#     LLAMA_ROPE_TYPE_NORM =  0,
#     LLAMA_ROPE_TYPE_NEOX =  2,
#     LLAMA_ROPE_TYPE_GLM  =  4,
# };
LLAMA_ROPE_TYPE_NONE = -1
LLAMA_ROPE_TYPE_NORM = 0
LLAMA_ROPE_TYPE_NEOX = 2
LLAMA_ROPE_TYPE_GLM = 4


# enum llama_token_type {
#     LLAMA_TOKEN_TYPE_UNDEFINED    = 0,
#     LLAMA_TOKEN_TYPE_NORMAL       = 1,
#     LLAMA_TOKEN_TYPE_UNKNOWN      = 2,
#     LLAMA_TOKEN_TYPE_CONTROL      = 3,
#     LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
#     LLAMA_TOKEN_TYPE_UNUSED       = 5,
#     LLAMA_TOKEN_TYPE_BYTE         = 6,
# };
LLAMA_TOKEN_TYPE_UNDEFINED = 0
LLAMA_TOKEN_TYPE_NORMAL = 1
LLAMA_TOKEN_TYPE_UNKNOWN = 2
LLAMA_TOKEN_TYPE_CONTROL = 3
LLAMA_TOKEN_TYPE_USER_DEFINED = 4
LLAMA_TOKEN_TYPE_UNUSED = 5
LLAMA_TOKEN_TYPE_BYTE = 6


# // model file types
# enum llama_ftype {
#     LLAMA_FTYPE_ALL_F32              = 0,
#     LLAMA_FTYPE_MOSTLY_F16           = 1,  // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q4_0          = 2,  // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q4_1          = 3,  // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4,  // tok_embeddings.weight and output.weight are F16
#     // LLAMA_FTYPE_MOSTLY_Q4_2       = 5,  // support has been removed
#     // LLAMA_FTYPE_MOSTLY_Q4_3       = 6,  // support has been removed
#     LLAMA_FTYPE_MOSTLY_Q8_0          = 7,  // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q5_0          = 8,  // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q5_1          = 9,  // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q2_K          = 10, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q3_K_S        = 11, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q3_K_M        = 12, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q3_K_L        = 13, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q4_K_S        = 14, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q4_K_M        = 15, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q5_K_S        = 16, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q5_K_M        = 17, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q6_K          = 18, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_IQ2_XXS       = 19, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_IQ2_XS        = 20, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_Q2_K_S        = 21, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_IQ3_XS        = 22, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_IQ3_XXS       = 23, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_IQ1_S         = 24, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_IQ4_NL        = 25, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_IQ3_S         = 26, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_IQ3_M         = 27, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_IQ2_S         = 28, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_IQ2_M         = 29, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_IQ4_XS        = 30, // except 1d tensors
#     LLAMA_FTYPE_MOSTLY_IQ1_M         = 31, // except 1d tensors

#     LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
# };
LLAMA_FTYPE_ALL_F32 = 0
LLAMA_FTYPE_MOSTLY_F16 = 1
LLAMA_FTYPE_MOSTLY_Q4_0 = 2
LLAMA_FTYPE_MOSTLY_Q4_1 = 3
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4
LLAMA_FTYPE_MOSTLY_Q8_0 = 7
LLAMA_FTYPE_MOSTLY_Q5_0 = 8
LLAMA_FTYPE_MOSTLY_Q5_1 = 9
LLAMA_FTYPE_MOSTLY_Q2_K = 10
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17
LLAMA_FTYPE_MOSTLY_Q6_K = 18
LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19
LLAMA_FTYPE_MOSTLY_IQ2_XS = 20
LLAMA_FTYPE_MOSTLY_Q2_K_S = 21
LLAMA_FTYPE_MOSTLY_IQ3_XS = 22
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23
LLAMA_FTYPE_MOSTLY_IQ1_S = 24
LLAMA_FTYPE_MOSTLY_IQ4_NL = 25
LLAMA_FTYPE_MOSTLY_IQ3_S = 26
LLAMA_FTYPE_MOSTLY_IQ3_M = 27
LLAMA_FTYPE_MOSTLY_IQ2_S = 28
LLAMA_FTYPE_MOSTLY_IQ2_M = 29
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30
LLAMA_FTYPE_GUESSED = 1024

# enum llama_rope_scaling_type {
#     LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
#     LLAMA_ROPE_SCALING_TYPE_NONE        = 0,
#     LLAMA_ROPE_SCALING_TYPE_LINEAR      = 1,
#     LLAMA_ROPE_SCALING_TYPE_YARN        = 2,
#     LLAMA_ROPE_SCALING_TYPE_MAX_VALUE   = LLAMA_ROPE_SCALING_TYPE_YARN,
# };
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1
LLAMA_ROPE_SCALING_TYPE_NONE = 0
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1
LLAMA_ROPE_SCALING_TYPE_YARN = 2
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN

# enum llama_pooling_type {
#     LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
#     LLAMA_POOLING_TYPE_NONE = 0,
#     LLAMA_POOLING_TYPE_MEAN = 1,
#     LLAMA_POOLING_TYPE_CLS  = 2,
# };
LLAMA_POOLING_TYPE_UNSPECIFIED = -1
LLAMA_POOLING_TYPE_NONE = 0
LLAMA_POOLING_TYPE_MEAN = 1
LLAMA_POOLING_TYPE_CLS = 2

# enum llama_split_mode {
#     LLAMA_SPLIT_MODE_NONE    = 0, // single GPU
#     LLAMA_SPLIT_MODE_LAYER   = 1, // split layers and KV across GPUs
#     LLAMA_SPLIT_MODE_ROW     = 2, // split rows across GPUs
# };
LLAMA_SPLIT_MODE_NONE = 0
LLAMA_SPLIT_MODE_LAYER = 1
LLAMA_SPLIT_MODE_ROW = 2


# typedef struct llama_token_data {
#     llama_token id; // token id
#     float logit;    // log-odds of the token
#     float p;        // probability of the token
# } llama_token_data;
class llama_token_data(ctypes.Structure):
    """Used to store token data

    Attributes:
        id (llama_token): token id
        logit (float): log-odds of the token
        p (float): probability of the token"""

    if TYPE_CHECKING:
        id: llama_token
        logit: float
        p: float

    _fields_ = [
        ("id", llama_token),
        ("logit", ctypes.c_float),
        ("p", ctypes.c_float),
    ]


llama_token_data_p = ctypes.POINTER(llama_token_data)


# typedef struct llama_token_data_array {
#     llama_token_data * data;
#     size_t size;
#     bool sorted;
# } llama_token_data_array;
class llama_token_data_array(ctypes.Structure):
    """Used to sample tokens given logits

    Attributes:
        data (ctypes.Array[llama_token_data]): token data
        size (int): size of the array
        sorted (bool): whether the array is sorted"""

    if TYPE_CHECKING:
        data: CtypesArray[llama_token_data]
        size: int
        sorted: bool

    _fields_ = [
        ("data", llama_token_data_p),
        ("size", ctypes.c_size_t),
        ("sorted", ctypes.c_bool),
    ]


llama_token_data_array_p = ctypes.POINTER(llama_token_data_array)

# typedef bool (*llama_progress_callback)(float progress, void *ctx);
llama_progress_callback = ctypes.CFUNCTYPE(
    ctypes.c_bool, ctypes.c_float, ctypes.c_void_p
)


# // Input data for llama_decode
# // A llama_batch object can contain input about one or many sequences
# // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
# //
# // - token  : the token ids of the input (used when embd is NULL)
# // - embd   : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
# // - pos    : the positions of the respective token in the sequence
# // - seq_id : the sequence to which the respective token belongs
# // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
# //
# typedef struct llama_batch {
#     int32_t n_tokens;

#     llama_token  *  token;
#     float        *  embd;
#     llama_pos    *  pos;
#     int32_t      *  n_seq_id;
#     llama_seq_id ** seq_id;
#     int8_t       *  logits; // TODO: rename this to "output"


#     // NOTE: helpers for smooth API transition - can be deprecated in the future
#     //       for future-proof code, use the above fields instead and ignore everything below
#     //
#     // pos[i] = all_pos_0 + i*all_pos_1
#     //
#     llama_pos    all_pos_0;  // used if pos == NULL
#     llama_pos    all_pos_1;  // used if pos == NULL
#     llama_seq_id all_seq_id; // used if seq_id == NULL
# } llama_batch;
class llama_batch(ctypes.Structure):
    """Input data for llama_decode

    A llama_batch object can contain input about one or many sequences

    The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens

    Attributes:
        n_tokens (int): number of tokens
        token (ctypes.Array[llama_token]): the token ids of the input (used when embd is NULL)
        embd (ctypes.Array[ctypes.ctypes.c_float]): token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
        pos (ctypes.Array[ctypes.Array[llama_pos]]): the positions of the respective token in the sequence
        seq_id (ctypes.Array[ctypes.Array[llama_seq_id]]): the sequence to which the respective token belongs
        logits (ctypes.Array[ctypes.ctypes.c_int8]): if zero, the logits for the respective token will not be output
    """

    if TYPE_CHECKING:
        n_tokens: int
        token: CtypesArray[llama_token]
        embd: CtypesArray[ctypes.c_float]
        pos: CtypesArray[CtypesArray[llama_pos]]
        n_seq_id: CtypesArray[ctypes.c_int]
        seq_id: CtypesArray[CtypesArray[llama_seq_id]]
        logits: CtypesArray[ctypes.c_int8]

    _fields_ = [
        ("n_tokens", ctypes.c_int32),
        ("token", ctypes.POINTER(llama_token)),
        ("embd", ctypes.POINTER(ctypes.c_float)),
        ("pos", ctypes.POINTER(llama_pos)),
        ("n_seq_id", ctypes.POINTER(ctypes.c_int32)),
        ("seq_id", ctypes.POINTER(ctypes.POINTER(llama_seq_id))),
        ("logits", ctypes.POINTER(ctypes.c_int8)),
        ("all_pos_0", llama_pos),
        ("all_pos_1", llama_pos),
        ("all_seq_id", llama_seq_id),
    ]


# enum llama_model_kv_override_type {
#     LLAMA_KV_OVERRIDE_TYPE_INT,
#     LLAMA_KV_OVERRIDE_TYPE_FLOAT,
#     LLAMA_KV_OVERRIDE_TYPE_BOOL,
#     LLAMA_KV_OVERRIDE_TYPE_STR,
# };
LLAMA_KV_OVERRIDE_TYPE_INT = 0
LLAMA_KV_OVERRIDE_TYPE_FLOAT = 1
LLAMA_KV_OVERRIDE_TYPE_BOOL = 2
LLAMA_KV_OVERRIDE_TYPE_STR = 3


# struct llama_model_kv_override {
#     enum llama_model_kv_override_type tag;

#     char key[128];


#     union {
#         int64_t val_i64;
#         double  val_f64;
#         bool    val_bool;
#         char    val_str[128];
#     };
# };
class llama_model_kv_override_value(ctypes.Union):
    _fields_ = [
        ("int_value", ctypes.c_int64),
        ("float_value", ctypes.c_double),
        ("bool_value", ctypes.c_bool),
        ("str_value", ctypes.c_char * 128),
    ]

    if TYPE_CHECKING:
        int_value: int
        float_value: float
        bool_value: bool
        str_value: bytes


class llama_model_kv_override(ctypes.Structure):
    _fields_ = [
        ("tag", ctypes.c_int),
        ("key", ctypes.c_char * 128),
        ("value", llama_model_kv_override_value),
    ]

    if TYPE_CHECKING:
        tag: int
        key: bytes
        value: Union[int, float, bool, bytes]


# struct llama_model_params {
#     int32_t n_gpu_layers; // number of layers to store in VRAM
#     enum llama_split_mode split_mode; // how to split the model across multiple GPUs

#     // main_gpu interpretation depends on split_mode:
#     // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
#     // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
#     // LLAMA_SPLIT_LAYER: ignored
#     int32_t main_gpu;

#     // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
#     const float * tensor_split;

#     // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
#     // If the provided progress_callback returns true, model loading continues.
#     // If it returns false, model loading is immediately aborted.
#     llama_progress_callback progress_callback;

#     // context pointer passed to the progress callback
#     void * progress_callback_user_data;

#     // override key-value pairs of the model meta data
#     const struct llama_model_kv_override * kv_overrides;


#     // Keep the booleans together to avoid misalignment during copy-by-value.
#     bool vocab_only;    // only load the vocabulary, no weights
#     bool use_mmap;      // use mmap if possible
#     bool use_mlock;     // force system to keep model in RAM
#     bool check_tensors; // validate model tensor data
# };
class llama_model_params(ctypes.Structure):
    """Parameters for llama_model

    Attributes:
        n_gpu_layers (int): number of layers to store in VRAM
        split_mode (int): how to split the model across multiple GPUs
        main_gpu (int): the GPU that is used for the entire model. main_gpu interpretation depends on split_mode: LLAMA_SPLIT_NONE: the GPU that is used for the entire model LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results LLAMA_SPLIT_LAYER: ignored
        tensor_split (ctypes.Array[ctypes.ctypes.c_float]): proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
        progress_callback (llama_progress_callback): called with a progress value between 0.0 and 1.0. Pass NULL to disable. If the provided progress_callback returns true, model loading continues. If it returns false, model loading is immediately aborted.
        progress_callback_user_data (ctypes.ctypes.c_void_p): context pointer passed to the progress callback
        kv_overrides (ctypes.Array[llama_model_kv_override]): override key-value pairs of the model meta data
        vocab_only (bool): only load the vocabulary, no weights
        use_mmap (bool): use mmap if possible
        use_mlock (bool): force system to keep model in RAM
        check_tensors (bool): validate model tensor data"""

    if TYPE_CHECKING:
        n_gpu_layers: int
        split_mode: int
        main_gpu: int
        tensor_split: CtypesArray[ctypes.c_float]
        progress_callback: Callable[[float, ctypes.c_void_p], bool]
        progress_callback_user_data: ctypes.c_void_p
        kv_overrides: CtypesArray[llama_model_kv_override]
        vocab_only: bool
        use_mmap: bool
        use_mlock: bool
        check_tensors: bool

    _fields_ = [
        ("n_gpu_layers", ctypes.c_int32),
        ("split_mode", ctypes.c_int),
        ("main_gpu", ctypes.c_int32),
        ("tensor_split", ctypes.POINTER(ctypes.c_float)),
        ("progress_callback", llama_progress_callback),
        ("progress_callback_user_data", ctypes.c_void_p),
        ("kv_overrides", ctypes.POINTER(llama_model_kv_override)),
        ("vocab_only", ctypes.c_bool),
        ("use_mmap", ctypes.c_bool),
        ("use_mlock", ctypes.c_bool),
        ("check_tensors", ctypes.c_bool),
    ]


# struct llama_context_params {
#     uint32_t seed;              // RNG seed, -1 for random
#     uint32_t n_ctx;             // text context, 0 = from model
#     uint32_t n_batch;           // logical maximum batch size that can be submitted to llama_decode
#     uint32_t n_ubatch;          // physical maximum batch size
#     uint32_t n_seq_max;         // max number of sequences (i.e. distinct states for recurrent models)
#     uint32_t n_threads;         // number of threads to use for generation
#     uint32_t n_threads_batch;   // number of threads to use for batch processing

#     enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
#     enum llama_pooling_type      pooling_type;      // whether to pool (sum) embedding results by sequence id
#                                                     // (ignored if no pooling layer)

#     // ref: https://github.com/ggerganov/llama.cpp/pull/2054
#     float    rope_freq_base;   // RoPE base frequency, 0 = from model
#     float    rope_freq_scale;  // RoPE frequency scaling factor, 0 = from model
#     float    yarn_ext_factor;  // YaRN extrapolation mix factor, negative = from model
#     float    yarn_attn_factor; // YaRN magnitude scaling factor
#     float    yarn_beta_fast;   // YaRN low correction dim
#     float    yarn_beta_slow;   // YaRN high correction dim
#     uint32_t yarn_orig_ctx;    // YaRN original context size
#     float    defrag_thold;     // defragment the KV cache if holes/size > thold, < 0 disabled (default)

#     ggml_backend_sched_eval_callback cb_eval;
#     void * cb_eval_user_data;

#     enum ggml_type type_k; // data type for K cache
#     enum ggml_type type_v; // data type for V cache

#     // Keep the booleans together to avoid misalignment during copy-by-value.
#     bool logits_all;  // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
#     bool embeddings;  // if true, extract embeddings (together with logits)
#     bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
#     bool flash_attn;  // whether to use flash attention


#     // Abort callback
#     // if it returns true, execution of llama_decode() will be aborted
#     // currently works only with CPU execution
#     ggml_abort_callback abort_callback;
#     void *              abort_callback_data;
# };
class llama_context_params(ctypes.Structure):
    """Parameters for llama_context

    Attributes:
        seed (int): RNG seed, -1 for random
        n_ctx (int): text context, 0 = from model
        n_batch (int): logical maximum batch size that can be submitted to llama_decode
        n_ubatch (int): physical maximum batch size
        n_seq_max (int): max number of sequences (i.e. distinct states for recurrent models)
        n_threads (int): number of threads to use for generation
        n_threads_batch (int): number of threads to use for batch processing
        rope_scaling_type (int): RoPE scaling type, from `enum llama_rope_scaling_type`
        pooling_type (int): whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)
        rope_freq_base (float): RoPE base frequency, 0 = from model
        rope_freq_scale (float): RoPE frequency scaling factor, 0 = from model
        yarn_ext_factor (float): YaRN extrapolation mix factor, negative = from model
        yarn_attn_factor (float): YaRN magnitude scaling factor
        yarn_beta_fast (float): YaRN low correction dim
        yarn_beta_slow (float): YaRN high correction dim
        yarn_orig_ctx (int): YaRN original context size
        defrag_thold (float): defragment the KV cache if holes/size > thold, < 0 disabled (default)
        cb_eval (ggml_backend_sched_eval_callback): callback for scheduling eval
        cb_eval_user_data (ctypes.ctypes.c_void_p): user data for cb_eval
        type_k (int): data type for K cache
        type_v (int): data type for V cache
        logits_all (bool): the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
        embeddings (bool): if true, extract embeddings (together with logits)
        offload_kqv (bool): whether to offload the KQV ops (including the KV cache) to GPU
        flash_attn (bool): whether to use flash attention
        abort_callback (ggml_abort_callback): abort callback if it returns true, execution of llama_decode() will be aborted
        abort_callback_data (ctypes.ctypes.c_void_p): data for abort_callback
    """

    if TYPE_CHECKING:
        seed: int
        n_ctx: int
        n_batch: int
        n_ubatch: int
        n_seq_max: int
        n_threads: int
        n_threads_batch: int
        rope_scaling_type: int
        pooling_type: int
        rope_freq_base: float
        rope_freq_scale: float
        yarn_ext_factor: float
        yarn_attn_factor: float
        yarn_beta_fast: float
        yarn_beta_slow: float
        yarn_orig_ctx: int
        defrag_thold: float
        cb_eval: Callable[[ctypes.c_void_p, bool], bool]
        cb_eval_user_data: ctypes.c_void_p
        type_k: int
        type_v: int
        logits_all: bool
        embeddings: bool
        offload_kqv: bool
        flash_attn: bool
        abort_callback: Callable[[ctypes.c_void_p], bool]
        abort_callback_data: ctypes.c_void_p

    _fields_ = [
        ("seed", ctypes.c_uint32),
        ("n_ctx", ctypes.c_uint32),
        ("n_batch", ctypes.c_uint32),
        ("n_ubatch", ctypes.c_uint32),
        ("n_seq_max", ctypes.c_uint32),
        ("n_threads", ctypes.c_uint32),
        ("n_threads_batch", ctypes.c_uint32),
        ("rope_scaling_type", ctypes.c_int),
        ("pooling_type", ctypes.c_int),
        ("rope_freq_base", ctypes.c_float),
        ("rope_freq_scale", ctypes.c_float),
        ("yarn_ext_factor", ctypes.c_float),
        ("yarn_attn_factor", ctypes.c_float),
        ("yarn_beta_fast", ctypes.c_float),
        ("yarn_beta_slow", ctypes.c_float),
        ("yarn_orig_ctx", ctypes.c_uint32),
        ("defrag_thold", ctypes.c_float),
        ("cb_eval", ggml_backend_sched_eval_callback),
        ("cb_eval_user_data", ctypes.c_void_p),
        ("type_k", ctypes.c_int),
        ("type_v", ctypes.c_int),
        ("logits_all", ctypes.c_bool),
        ("embeddings", ctypes.c_bool),
        ("offload_kqv", ctypes.c_bool),
        ("flash_attn", ctypes.c_bool),
        ("abort_callback", ggml_abort_callback),
        ("abort_callback_data", ctypes.c_void_p),
    ]


# // Signature for logging events
# // Note that text includes the new line character at the end for most events.
# // If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
# // if it exists.
# // It might not exist for progress report where '.' is output repeatedly.
# typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
llama_log_callback = ctypes.CFUNCTYPE(
    None, ctypes.c_int, ctypes.c_char_p, ctypes.c_void_p
)
"""Signature for logging events
Note that text includes the new line character at the end for most events.
If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
if it exists.
It might not exist for progress report where '.' is output repeatedly."""


# // model quantization parameters
# typedef struct llama_model_quantize_params {
#     int32_t nthread;                     // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
#     enum llama_ftype ftype;              // quantize to this llama_ftype
#     enum ggml_type output_tensor_type;   // output tensor type
#     enum ggml_type token_embedding_type; // itoken embeddings tensor type
#     bool allow_requantize;               // allow quantizing non-f32/f16 tensors
#     bool quantize_output_tensor;         // quantize output.weight
#     bool only_copy;                      // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
#     bool pure;                           // quantize all tensors to the default type
#     bool keep_split;                     // quantize to the same number of shards
#     void * imatrix;                      // pointer to importance matrix data
#     void * kv_overrides;                 // pointer to vector containing overrides
# } llama_model_quantize_params;
class llama_model_quantize_params(ctypes.Structure):
    """Parameters for llama_model_quantize

    Attributes:
        nthread (int): number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
        ftype (int): quantize to this llama_ftype
        output_tensor_type (int): output tensor type
        token_embedding_type (int): itoken embeddings tensor type
        allow_requantize (bool): allow quantizing non-f32/f16 tensors
        quantize_output_tensor (bool): quantize output.weight
        only_copy (bool): only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
        pure (bool): quantize all tensors to the default type
        keep_split (bool): quantize to the same number of shards
        imatrix (ctypes.c_void_p): pointer to importance matrix data
        kv_overrides (ctypes.c_void_p): pointer to vector containing overrides
    """

    if TYPE_CHECKING:
        nthread: int
        ftype: int
        output_tensor_type: int
        token_embedding_type: int
        allow_requantize: bool
        quantize_output_tensor: bool
        only_copy: bool
        pure: bool
        keep_split: bool
        imatrix: ctypes.c_void_p
        kv_overrides: ctypes.c_void_p

    _fields_ = [
        ("nthread", ctypes.c_int32),
        ("ftype", ctypes.c_int),
        ("output_tensor_type", ctypes.c_int),
        ("token_embedding_type", ctypes.c_int),
        ("allow_requantize", ctypes.c_bool),
        ("quantize_output_tensor", ctypes.c_bool),
        ("only_copy", ctypes.c_bool),
        ("pure", ctypes.c_bool),
        ("keep_split", ctypes.c_bool),
        ("imatrix", ctypes.c_void_p),
        ("kv_overrides", ctypes.c_void_p),
    ]


# // grammar types
# struct llama_grammar;
llama_grammar_p = ctypes.c_void_p

# // grammar element type
# enum llama_gretype {
#     // end of rule definition
#     LLAMA_GRETYPE_END            = 0,

#     // start of alternate definition for rule
#     LLAMA_GRETYPE_ALT            = 1,

#     // non-terminal element: reference to rule
#     LLAMA_GRETYPE_RULE_REF       = 2,

#     // terminal element: character (code point)
#     LLAMA_GRETYPE_CHAR           = 3,

#     // inverse char(s) ([^a], [^a-b] [^abc])
#     LLAMA_GRETYPE_CHAR_NOT       = 4,

#     // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
#     // be an inclusive range ([a-z])
#     LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,

#     // modifies a preceding LLAMA_GRETYPE_CHAR or
#     // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
#     LLAMA_GRETYPE_CHAR_ALT       = 6,
# };
LLAMA_GRETYPE_END = 0
LLAMA_GRETYPE_ALT = 1
LLAMA_GRETYPE_RULE_REF = 2
LLAMA_GRETYPE_CHAR = 3
LLAMA_GRETYPE_CHAR_NOT = 4
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5
LLAMA_GRETYPE_CHAR_ALT = 6


# typedef struct llama_grammar_element {
#     enum llama_gretype type;
#     uint32_t           value; // Unicode code point or rule ID
# } llama_grammar_element;
class llama_grammar_element(ctypes.Structure):
    if TYPE_CHECKING:
        type: int
        value: int

    _fields_ = [
        ("type", ctypes.c_int),
        ("value", ctypes.c_uint32),
    ]


llama_grammar_element_p = ctypes.POINTER(llama_grammar_element)

# // performance timing information
# struct llama_timings {
#     double t_start_ms;
#     double t_end_ms;
#     double t_load_ms;
#     double t_sample_ms;
#     double t_p_eval_ms;
#     double t_eval_ms;


#     int32_t n_sample;
#     int32_t n_p_eval;
#     int32_t n_eval;
# };
class llama_timings(ctypes.Structure):
    if TYPE_CHECKING:
        t_start_ms: float
        t_end_ms: float
        t_load_ms: float
        t_sample_ms: float
        t_p_eval_ms: float
        t_eval_ms: float
        n_sample: int
        n_p_eval: int
        n_eval: int

    _fields_ = [
        ("t_start_ms", ctypes.c_double),
        ("t_end_ms", ctypes.c_double),
        ("t_load_ms", ctypes.c_double),
        ("t_sample_ms", ctypes.c_double),
        ("t_p_eval_ms", ctypes.c_double),
        ("t_eval_ms", ctypes.c_double),
        ("n_sample", ctypes.c_int32),
        ("n_p_eval", ctypes.c_int32),
        ("n_eval", ctypes.c_int32),
    ]


# // used in chat template
# typedef struct llama_chat_message {
#     const char * role;
#     const char * content;
# } llama_chat_message;
class llama_chat_message(ctypes.Structure):
    _fields_ = [
        ("role", ctypes.c_char_p),
        ("content", ctypes.c_char_p),
    ]


# // Helpers for getting default parameters
# LLAMA_API struct llama_model_params llama_model_default_params(void);
@ctypes_function(
    "llama_model_default_params",
    [],
    llama_model_params,
)
def llama_model_default_params() -> llama_model_params:
    """Get default parameters for llama_model"""
    ...


# LLAMA_API struct llama_context_params llama_context_default_params(void);
@ctypes_function(
    "llama_context_default_params",
    [],
    llama_context_params,
)
def llama_context_default_params() -> llama_context_params:
    """Get default parameters for llama_context"""
    ...


# LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
@ctypes_function(
    "llama_model_quantize_default_params",
    [],
    llama_model_quantize_params,
)
def llama_model_quantize_default_params() -> llama_model_quantize_params:
    """Get default parameters for llama_model_quantize"""
    ...


# // Initialize the llama + ggml backend
# // If numa is true, use NUMA optimizations
# // Call once at the start of the program
# LLAMA_API void llama_backend_init(bool numa);
# LLAMA_API void llama_backend_init(void);
@ctypes_function(
    "llama_backend_init",
    [],
    None,
)
def llama_backend_init():
    """Initialize the llama + ggml backend
    If numa is true, use NUMA optimizations
    Call once at the start of the program"""
    ...


# // numa strategies
# enum ggml_numa_strategy {
#     GGML_NUMA_STRATEGY_DISABLED   = 0,
#     GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
#     GGML_NUMA_STRATEGY_ISOLATE    = 2,
#     GGML_NUMA_STRATEGY_NUMACTL    = 3,
#     GGML_NUMA_STRATEGY_MIRROR     = 4,
#     GGML_NUMA_STRATEGY_COUNT
# };
GGML_NUMA_STRATEGY_DISABLED = 0
GGML_NUMA_STRATEGY_DISTRIBUTE = 1
GGML_NUMA_STRATEGY_ISOLATE = 2
GGML_NUMA_STRATEGY_NUMACTL = 3
GGML_NUMA_STRATEGY_MIRROR = 4
GGML_NUMA_STRATEGY_COUNT = 5


# //optional:
# LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
@ctypes_function(
    "llama_numa_init",
    [ctypes.c_int],
    None,
)
def llama_numa_init(numa: int, /): ...


# // Call once at the end of the program - currently only used for MPI
# LLAMA_API void llama_backend_free(void);
@ctypes_function(
    "llama_backend_free",
    [],
    None,
)
def llama_backend_free():
    """Call once at the end of the program - currently only used for MPI"""
    ...


# LLAMA_API struct llama_model * llama_load_model_from_file(
#                          const char * path_model,
#         struct llama_model_params     params);
@ctypes_function(
    "llama_load_model_from_file",
    [ctypes.c_char_p, llama_model_params],
    llama_model_p_ctypes,
)
def llama_load_model_from_file(
    path_model: bytes, params: llama_model_params, /
) -> Optional[llama_model_p]: ...


# LLAMA_API void llama_free_model(struct llama_model * model);
@ctypes_function(
    "llama_free_model",
    [llama_model_p_ctypes],
    None,
)
def llama_free_model(model: llama_model_p, /): ...


# LLAMA_API struct llama_context * llama_new_context_with_model(
#                  struct llama_model * model,
#         struct llama_context_params   params);
@ctypes_function(
    "llama_new_context_with_model",
    [llama_model_p_ctypes, llama_context_params],
    llama_context_p_ctypes,
)
def llama_new_context_with_model(
    model: llama_model_p, params: llama_context_params, /
) -> Optional[llama_context_p]: ...


# // Frees all allocated memory
# LLAMA_API void llama_free(struct llama_context * ctx);
@ctypes_function(
    "llama_free",
    [llama_context_p_ctypes],
    None,
)
def llama_free(ctx: llama_context_p, /):
    """Frees all allocated memory"""
    ...


# LLAMA_API int64_t llama_time_us(void);
@ctypes_function(
    "llama_time_us",
    [],
    ctypes.c_int64,
)
def llama_time_us() -> int: ...


# LLAMA_API size_t llama_max_devices(void);
@ctypes_function("llama_max_devices", [], ctypes.c_size_t)
def llama_max_devices() -> int: ...


# LLAMA_API bool llama_supports_mmap       (void);
@ctypes_function("llama_supports_mmap", [], ctypes.c_bool)
def llama_supports_mmap() -> bool: ...


# LLAMA_API bool llama_supports_mlock      (void);
@ctypes_function("llama_supports_mlock", [], ctypes.c_bool)
def llama_supports_mlock() -> bool: ...


# LLAMA_API bool llama_supports_gpu_offload(void);
@ctypes_function("llama_supports_gpu_offload", [], ctypes.c_bool)
def llama_supports_gpu_offload() -> bool: ...


# LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
@ctypes_function("llama_get_model", [llama_context_p_ctypes], llama_model_p_ctypes)
def llama_get_model(ctx: llama_context_p, /) -> Optional[llama_model_p]: ...


# LLAMA_API uint32_t llama_n_ctx      (const struct llama_context * ctx);
@ctypes_function("llama_n_ctx", [llama_context_p_ctypes], ctypes.c_uint32)
def llama_n_ctx(ctx: llama_context_p, /) -> int: ...


# LLAMA_API uint32_t llama_n_batch    (const struct llama_context * ctx);
@ctypes_function("llama_n_batch", [llama_context_p_ctypes], ctypes.c_uint32)
def llama_n_batch(ctx: llama_context_p, /) -> int: ...


# LLAMA_API uint32_t llama_n_ubatch   (const struct llama_context * ctx);
@ctypes_function("llama_n_ubatch", [llama_context_p_ctypes], ctypes.c_uint32)
def llama_n_ubatch(ctx: llama_context_p, /) -> int: ...


# LLAMA_API uint32_t llama_n_seq_max  (const struct llama_context * ctx);
@ctypes_function("llama_n_seq_max", [llama_context_p_ctypes], ctypes.c_uint32)
def llama_n_seq_max(ctx: llama_context_p, /) -> int: ...


# LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
@ctypes_function("llama_pooling_type", [llama_context_p_ctypes], ctypes.c_int)
def llama_pooling_type(ctx: llama_context_p, /) -> int: ...


# LLAMA_API enum llama_vocab_type   llama_vocab_type  (const struct llama_model   * model);
@ctypes_function("llama_vocab_type", [llama_model_p_ctypes], ctypes.c_int)
def llama_vocab_type(model: llama_model_p, /) -> int: ...


# LLAMA_API enum llama_rope_type    llama_rope_type   (const struct llama_model   * model);
@ctypes_function("llama_rope_type", [llama_model_p_ctypes], ctypes.c_int)
def llama_rope_type(model: llama_model_p, /) -> int: ...


# LLAMA_API int32_t llama_n_vocab    (const struct llama_model * model);
@ctypes_function("llama_n_vocab", [llama_model_p_ctypes], ctypes.c_int32)
def llama_n_vocab(model: llama_model_p, /) -> int: ...


# LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
@ctypes_function("llama_n_ctx_train", [llama_model_p_ctypes], ctypes.c_int32)
def llama_n_ctx_train(model: llama_model_p, /) -> int: ...


# LLAMA_API int32_t llama_n_embd     (const struct llama_model * model);
@ctypes_function("llama_n_embd", [llama_model_p_ctypes], ctypes.c_int32)
def llama_n_embd(model: llama_model_p, /) -> int: ...


# LLAMA_API int32_t llama_n_layer    (const struct llama_model * model);
@ctypes_function("llama_n_layer", [llama_model_p_ctypes], ctypes.c_int32)
def llama_n_layer(model: llama_model_p, /) -> int: ...


# // Get the model's RoPE frequency scaling factor
# LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
@ctypes_function("llama_rope_freq_scale_train", [llama_model_p_ctypes], ctypes.c_float)
def llama_rope_freq_scale_train(model: llama_model_p, /) -> float:
    """Get the model's RoPE frequency scaling factor"""
    ...


# // Functions to access the model's GGUF metadata scalar values
# // - The functions return the length of the string on success, or -1 on failure
# // - The output string is always null-terminated and cleared on failure
# // - GGUF array values are not supported by these functions


# // Get metadata value as a string by key name
# LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
@ctypes_function(
    "llama_model_meta_val_str",
    [
        llama_model_p_ctypes,
        ctypes.c_char_p,
        ctypes.c_char_p,
        ctypes.c_size_t,
    ],
    ctypes.c_int32,
)
def llama_model_meta_val_str(
    model: llama_model_p,
    key: Union[ctypes.c_char_p, bytes],
    buf: bytes,
    buf_size: int,
    /,
) -> int:
    """Get metadata value as a string by key name"""
    ...


# // Get the number of metadata key/value pairs
# LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
@ctypes_function("llama_model_meta_count", [llama_model_p_ctypes], ctypes.c_int32)
def llama_model_meta_count(model: llama_model_p, /) -> int:
    """Get the number of metadata key/value pairs"""
    ...


# // Get metadata key name by index
# LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
@ctypes_function(
    "llama_model_meta_key_by_index",
    [
        llama_model_p_ctypes,
        ctypes.c_int32,
        ctypes.c_char_p,
        ctypes.c_size_t,
    ],
    ctypes.c_int32,
)
def llama_model_meta_key_by_index(
    model: llama_model_p,
    i: Union[ctypes.c_int, int],
    buf: Union[bytes, CtypesArray[ctypes.c_char]],
    buf_size: int,
    /,
) -> int:
    """Get metadata key name by index"""
    ...


# // Get metadata value as a string by index
# LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
@ctypes_function(
    "llama_model_meta_val_str_by_index",
    [
        llama_model_p_ctypes,
        ctypes.c_int32,
        ctypes.c_char_p,
        ctypes.c_size_t,
    ],
    ctypes.c_int32,
)
def llama_model_meta_val_str_by_index(
    model: llama_model_p,
    i: Union[ctypes.c_int, int],
    buf: Union[bytes, CtypesArray[ctypes.c_char]],
    buf_size: int,
    /,
) -> int:
    """Get metadata value as a string by index"""
    ...


# // Get a string describing the model type
# LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
@ctypes_function(
    "llama_model_desc",
    [llama_model_p_ctypes, ctypes.c_char_p, ctypes.c_size_t],
    ctypes.c_int32,
)
def llama_model_desc(
    model: llama_model_p,
    buf: Union[bytes, CtypesArray[ctypes.c_char]],
    buf_size: Union[ctypes.c_size_t, int],
    /,
) -> int:
    """Get a string describing the model type"""
    ...


# // Returns the total size of all the tensors in the model in bytes
# LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
@ctypes_function("llama_model_size", [llama_model_p_ctypes], ctypes.c_uint64)
def llama_model_size(model: llama_model_p, /) -> int:
    """Returns the total size of all the tensors in the model in bytes"""
    ...


# // Returns the total number of parameters in the model
# LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
@ctypes_function("llama_model_n_params", [llama_model_p_ctypes], ctypes.c_uint64)
def llama_model_n_params(model: llama_model_p, /) -> int:
    """Returns the total number of parameters in the model"""
    ...


# // Get a llama model tensor
# LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
@ctypes_function(
    "llama_get_model_tensor", [llama_model_p_ctypes, ctypes.c_char_p], ctypes.c_void_p
)
def llama_get_model_tensor(
    model: llama_model_p, name: Union[ctypes.c_char_p, bytes], /
) -> ctypes.c_void_p:
    """Get a llama model tensor"""
    ...


# // Returns 0 on success
# LLAMA_API uint32_t llama_model_quantize(
#         const char * fname_inp,
#         const char * fname_out,
#         const llama_model_quantize_params * params);
@ctypes_function(
    "llama_model_quantize",
    [
        ctypes.c_char_p,
        ctypes.c_char_p,
        ctypes.POINTER(llama_model_quantize_params),
    ],
    ctypes.c_uint32,
)
def llama_model_quantize(
    fname_inp: bytes,
    fname_out: bytes,
    params: CtypesPointerOrRef[llama_model_quantize_params],
    /,
) -> int:
    """Returns 0 on success"""
    ...


# // Apply a LoRA adapter to a loaded model
# // path_base_model is the path to a higher quality model to use as a base for
# // the layers modified by the adapter. Can be NULL to use the current loaded model.
# // The model needs to be reloaded before applying a new adapter, otherwise the adapter
# // will be applied on top of the previous one
# // Returns 0 on success
# LLAMA_API int32_t llama_model_apply_lora_from_file(
#         const struct llama_model * model,
#                       const char * path_lora,
#                            float   scale,
#                       const char * path_base_model,
#                          int32_t   n_threads);
@ctypes_function(
    "llama_model_apply_lora_from_file",
    [
        llama_model_p_ctypes,
        ctypes.c_char_p,
        ctypes.c_float,
        ctypes.c_char_p,
        ctypes.c_int32,
    ],
    ctypes.c_int32,
)
def llama_model_apply_lora_from_file(
    model: llama_model_p,
    path_lora: Union[ctypes.c_char_p, bytes],
    scale: Union[ctypes.c_float, float],
    path_base_model: Union[ctypes.c_char_p, bytes, None],
    n_threads: Union[ctypes.c_int32, int],
    /,
) -> int:
    """Apply a LoRA adapter to a loaded model
    path_base_model is the path to a higher quality model to use as a base for
    the layers modified by the adapter. Can be NULL to use the current loaded model.
    The model needs to be reloaded before applying a new adapter, otherwise the adapter
    will be applied on top of the previous one
    Returns 0 on success"""
    ...


# // Apply a loaded control vector to a llama_context, or if data is NULL, clear
# // the currently loaded vector.
# // n_embd should be the size of a single layer's control, and data should point
# // to an n_embd x n_layers buffer starting from layer 1.
# // il_start and il_end are the layer range the vector should apply to (both inclusive)
# // See llama_control_vector_load in common to load a control vector.
# LLAMA_API int32_t llama_control_vector_apply(
#         struct llama_context * lctx,
#                  const float * data,
#                       size_t   len,
#                      int32_t   n_embd,
#                      int32_t   il_start,
#                      int32_t   il_end);
@ctypes_function(
    "llama_control_vector_apply",
    [
        llama_context_p_ctypes,
        ctypes.POINTER(ctypes.c_float),
        ctypes.c_size_t,
        ctypes.c_int32,
        ctypes.c_int32,
        ctypes.c_int32,
    ],
    ctypes.c_int32,
)
def llama_control_vector_apply(
    lctx: llama_context_p,
    data: CtypesPointerOrRef[ctypes.c_float],
    len: int,
    n_embd: int,
    il_start: int,
    il_end: int,
    /,
) -> int:
    """Apply a loaded control vector to a llama_context, or if data is NULL, clear
    the currently loaded vector.
    n_embd should be the size of a single layer's control, and data should point
    to an n_embd x n_layers buffer starting from layer 1.
    il_start and il_end are the layer range the vector should apply to (both inclusive)
    See llama_control_vector_load in common to load a control vector."""
    ...


# //
# // KV cache
# //


# // Information associated with an individual cell in the KV cache view.
# struct llama_kv_cache_view_cell {
#     // The position for this cell. Takes KV cache shifts into account.
#     // May be negative if the cell is not populated.
#     llama_pos pos;
# };
class llama_kv_cache_view_cell(ctypes.Structure):
    """Information associated with an individual cell in the KV cache view.

    Attributes:
        pos (llama_pos): The position for this cell. Takes KV cache shifts into account.
            May be negative if the cell is not populated."""

    if TYPE_CHECKING:
        pos: llama_pos

    _fields_ = [("pos", llama_pos)]


# // An updateable view of the KV cache.
# struct llama_kv_cache_view {
#     // Number of KV cache cells. This will be the same as the context size.
#     int32_t n_cells;

#     // Maximum number of sequences that can exist in a cell. It's not an error
#     // if there are more sequences in a cell than this value, however they will
#     // not be visible in the view cells_sequences.
#     int32_t n_seq_max;

#     // Number of tokens in the cache. For example, if there are two populated
#     // cells, the first with 1 sequence id in it and the second with 2 sequence
#     // ids then you'll have 3 tokens.
#     int32_t token_count;

#     // Number of populated cache cells.
#     int32_t used_cells;

#     // Maximum contiguous empty slots in the cache.
#     int32_t max_contiguous;

#     // Index to the start of the max_contiguous slot range. Can be negative
#     // when cache is full.
#     int32_t max_contiguous_idx;

#     // Information for an individual cell.
#     struct llama_kv_cache_view_cell * cells;


#     // The sequences for each cell. There will be n_seq_max items per cell.
#     llama_seq_id * cells_sequences;
# };
class llama_kv_cache_view(ctypes.Structure):
    if TYPE_CHECKING:
        n_cells: int
        n_max_seq: int
        token_count: int
        used_cells: int
        max_contiguous: int
        max_contiguous_idx: int
        cells: CtypesArray[llama_kv_cache_view_cell]
        cells_sequences: CtypesArray[llama_seq_id]

    _fields_ = [
        ("n_cells", ctypes.c_int32),
        ("n_max_seq", ctypes.c_int32),
        ("token_count", ctypes.c_int32),
        ("used_cells", ctypes.c_int32),
        ("max_contiguous", ctypes.c_int32),
        ("max_contiguous_idx", ctypes.c_int32),
        ("cells", ctypes.POINTER(llama_kv_cache_view_cell)),
        ("cells_sequences", ctypes.POINTER(llama_seq_id)),
    ]


llama_kv_cache_view_p = ctypes.POINTER(llama_kv_cache_view)


# // Create an empty KV cache view. (use only for debugging purposes)
# LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
@ctypes_function(
    "llama_kv_cache_view_init",
    [llama_context_p_ctypes, ctypes.c_int32],
    llama_kv_cache_view,
)
def llama_kv_cache_view_init(
    ctx: llama_context_p, n_seq_max: Union[ctypes.c_int32, int], /
) -> llama_kv_cache_view:
    """Create an empty KV cache view. (use only for debugging purposes)"""
    ...


# // Free a KV cache view. (use only for debugging purposes)
# LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
@ctypes_function("llama_kv_cache_view_free", [llama_kv_cache_view_p], None)
def llama_kv_cache_view_free(view: "ctypes.pointer[llama_kv_cache_view]", /):  # type: ignore
    """Free a KV cache view. (use only for debugging purposes)"""
    ...


# // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
# LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
@ctypes_function(
    "llama_kv_cache_view_update", [llama_context_p_ctypes, llama_kv_cache_view_p], None
)
def llama_kv_cache_view_update(ctx: llama_context_p, view: CtypesPointerOrRef[llama_kv_cache_view], /):  # type: ignore
    """Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)"""
    ...


# // Returns the number of tokens in the KV cache (slow, use only for debug)
# // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
# LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
@ctypes_function(
    "llama_get_kv_cache_token_count", [llama_context_p_ctypes], ctypes.c_int32
)
def llama_get_kv_cache_token_count(ctx: llama_context_p, /) -> int:
    """Returns the number of tokens in the KV cache (slow, use only for debug)
    If a KV cell has multiple sequences assigned to it, it will be counted multiple times
    """
    ...


# // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
# LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
@ctypes_function(
    "llama_get_kv_cache_used_cells", [llama_context_p_ctypes], ctypes.c_int32
)
def llama_get_kv_cache_used_cells(ctx: llama_context_p, /) -> int:
    """Returns the number of used KV cells (i.e. have at least one sequence assigned to them)"""
    ...


# // Clear the KV cache - both cell info is erased and KV data is zeroed
# LLAMA_API void llama_kv_cache_clear(
#         struct llama_context * ctx);
@ctypes_function("llama_kv_cache_clear", [llama_context_p_ctypes], None)
def llama_kv_cache_clear(ctx: llama_context_p, /):
    """Clear the KV cache"""
    ...


# // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
# // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
# // seq_id < 0 : match any sequence
# // p0 < 0     : [0,  p1]
# // p1 < 0     : [p0, inf)
# LLAMA_API bool llama_kv_cache_seq_rm(
#         struct llama_context * ctx,
#                 llama_seq_id   seq_id,
#                    llama_pos   p0,
#                    llama_pos   p1);
@ctypes_function(
    "llama_kv_cache_seq_rm",
    [
        llama_context_p_ctypes,
        llama_seq_id,
        llama_pos,
        llama_pos,
    ],
    ctypes.c_bool,
)
def llama_kv_cache_seq_rm(
    ctx: llama_context_p,
    seq_id: Union[llama_seq_id, int],
    p0: Union[llama_pos, int],
    p1: Union[llama_pos, int],
    /,
) -> bool:
    """Removes all tokens that belong to the specified sequence and have positions in [p0, p1)

    Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails

    seq_id < 0 : match any sequence
    p0 < 0     : [0,  p1]
    p1 < 0     : [p0, inf)"""
    ...


# // Copy all tokens that belong to the specified sequence to another sequence
# // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
# // p0 < 0 : [0,  p1]
# // p1 < 0 : [p0, inf)
# LLAMA_API void llama_kv_cache_seq_cp(
#         struct llama_context * ctx,
#                 llama_seq_id   seq_id_src,
#                 llama_seq_id   seq_id_dst,
#                    llama_pos   p0,
#                    llama_pos   p1);
@ctypes_function(
    "llama_kv_cache_seq_cp",
    [
        llama_context_p_ctypes,
        llama_seq_id,
        llama_seq_id,
        llama_pos,
        llama_pos,
    ],
    None,
)
def llama_kv_cache_seq_cp(
    ctx: llama_context_p,
    seq_id_src: Union[llama_seq_id, int],
    seq_id_dst: Union[llama_seq_id, int],
    p0: Union[llama_pos, int],
    p1: Union[llama_pos, int],
    /,
):
    """Copy all tokens that belong to the specified sequence to another sequence
    Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
    p0 < 0 : [0,  p1]
    p1 < 0 : [p0, inf)"""
    ...


# // Removes all tokens that do not belong to the specified sequence
# LLAMA_API void llama_kv_cache_seq_keep(
#         struct llama_context * ctx,
#                 llama_seq_id   seq_id);
@ctypes_function(
    "llama_kv_cache_seq_keep", [llama_context_p_ctypes, llama_seq_id], None
)
def llama_kv_cache_seq_keep(ctx: llama_context_p, seq_id: Union[llama_seq_id, int], /):
    """Removes all tokens that do not belong to the specified sequence"""
    ...


# // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
# // If the KV cache is RoPEd, the KV data is updated accordingly:
# //   - lazily on next llama_decode()
# //   - explicitly with llama_kv_cache_update()
# // p0 < 0 : [0,  p1]
# // p1 < 0 : [p0, inf)
# LLAMA_API void llama_kv_cache_seq_add(
#         struct llama_context * ctx,
#                 llama_seq_id   seq_id,
#                    llama_pos   p0,
#                    llama_pos   p1,
#                    llama_pos   delta);
@ctypes_function(
    "llama_kv_cache_seq_add",
    [
        llama_context_p_ctypes,
        llama_seq_id,
        llama_pos,
        llama_pos,
        llama_pos,
    ],
    None,
)
def llama_kv_cache_seq_add(
    ctx: llama_context_p,
    seq_id: Union[llama_seq_id, int],
    p0: Union[llama_pos, int],
    p1: Union[llama_pos, int],
    delta: Union[llama_pos, int],
    /,
):
    """Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
    If the KV cache is RoPEd, the KV data is updated accordingly:
    - lazily on next llama_decode()
    - explicitly with llama_kv_cache_update()
    p0 < 0 : [0,  p1]
    p1 < 0 : [p0, inf)"""
    ...


# // Integer division of the positions by factor of `d > 1`
# // If the KV cache is RoPEd, the KV data is updated accordingly
# // p0 < 0 : [0,  p1]
# // p1 < 0 : [p0, inf)
# LLAMA_API void llama_kv_cache_seq_div(
#         struct llama_context * ctx,
#                 llama_seq_id   seq_id,
#                    llama_pos   p0,
#                    llama_pos   p1,
#                          int   d);
@ctypes_function(
    "llama_kv_cache_seq_div",
    [
        llama_context_p_ctypes,
        llama_seq_id,
        llama_pos,
        llama_pos,
        ctypes.c_int,
    ],
    None,
)
def llama_kv_cache_seq_div(
    ctx: llama_context_p,
    seq_id: Union[llama_seq_id, int],
    p0: Union[llama_pos, int],
    p1: Union[llama_pos, int],
    d: Union[ctypes.c_int, int],
    /,
):
    """Integer division of the positions by factor of `d > 1`
    If the KV cache is RoPEd, the KV data is updated accordingly
    p0 < 0 : [0,  p1]
    p1 < 0 : [p0, inf)"""
    ...


# // Defragment the KV cache
# // This will be applied:
# //   - lazily on next llama_decode()
# //   - explicitly with llama_kv_cache_update()
# LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
@ctypes_function("llama_kv_cache_defrag", [llama_context_p_ctypes], None)
def llama_kv_cache_defrag(ctx: llama_context_p, /):
    """Defragment the KV cache
    This will be applied:
    - lazily on next llama_decode()
    - explicitly with llama_kv_cache_update()"""
    ...


# // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
# LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
@ctypes_function("llama_kv_cache_update", [llama_context_p_ctypes], None)
def llama_kv_cache_update(ctx: llama_context_p, /):
    """Apply the KV cache updates (such as K-shifts, defragmentation, etc.)"""
    ...


# //
# // State / sessions
# //


# Returns the maximum size in bytes of the state (rng, logits, embedding
# and kv_cache) - will often be smaller after compacting tokens
# LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
@ctypes_function("llama_state_get_size", [llama_context_p_ctypes], ctypes.c_size_t)
def llama_state_get_size(ctx: llama_context_p, /) -> int:
    """Returns the maximum size in bytes of the state (rng, logits, embedding
    and kv_cache) - will often be smaller after compacting tokens"""
    ...


# LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
#     "use llama_state_get_size instead");
@ctypes_function("llama_get_state_size", [llama_context_p_ctypes], ctypes.c_size_t)
def llama_get_state_size(ctx: llama_context_p, /) -> int:
    """Returns the maximum size in bytes of the state (rng, logits, embedding
    and kv_cache) - will often be smaller after compacting tokens"""
    ...


# Copies the state to the specified destination address.
# Destination needs to have allocated enough memory.
# Returns the number of bytes copied
# LLAMA_API size_t llama_state_get_data(
#         struct llama_context * ctx,
#                      uint8_t * dst);
@ctypes_function(
    "llama_state_get_data",
    [
        llama_context_p_ctypes,
        ctypes.POINTER(ctypes.c_uint8),
    ],
    ctypes.c_size_t,
)
def llama_state_get_data(
    ctx: llama_context_p, dst: CtypesArray[ctypes.c_uint8], /
) -> int:
    """Copies the state to the specified destination address.
    Destination needs to have allocated enough memory.
    Returns the number of bytes copied"""
    ...


# LLAMA_API DEPRECATED(size_t llama_copy_state_data(
#         struct llama_context * ctx,
#                      uint8_t * dst),
#     "use llama_state_get_data instead");
@ctypes_function(
    "llama_copy_state_data",
    [
        llama_context_p_ctypes,
        ctypes.POINTER(ctypes.c_uint8),
    ],
    ctypes.c_size_t,
)
def llama_copy_state_data(
    ctx: llama_context_p, dst: CtypesArray[ctypes.c_uint8], /
) -> int:
    """Copies the state to the specified destination address.
    Destination needs to have allocated enough memory.
    Returns the number of bytes copied"""
    ...


# // Set the state reading from the specified address
# // Returns the number of bytes read
# LLAMA_API size_t llama_state_set_data(
#         struct llama_context * ctx,
#                const uint8_t * src);
@ctypes_function(
    "llama_state_set_data",
    [llama_context_p_ctypes, ctypes.POINTER(ctypes.c_uint8)],
    ctypes.c_size_t,
)
def llama_state_set_data(
    ctx: llama_context_p, src: CtypesArray[ctypes.c_uint8], /
) -> int:
    """Set the state reading from the specified address
    Returns the number of bytes read"""
    ...


# LLAMA_API DEPRECATED(size_t llama_set_state_data(
#         struct llama_context * ctx,
#                const uint8_t * src),
#     "use llama_state_set_data instead");
@ctypes_function(
    "llama_set_state_data",
    [llama_context_p_ctypes, ctypes.POINTER(ctypes.c_uint8)],
    ctypes.c_size_t,
)
def llama_set_state_data(
    ctx: llama_context_p, src: CtypesArray[ctypes.c_uint8], /
) -> int:
    """Set the state reading from the specified address"""
    ...


# Save/load session file
# LLAMA_API bool llama_state_load_file(
#         struct llama_context * ctx,
#                   const char * path_session,
#                  llama_token * tokens_out,
#                       size_t   n_token_capacity,
#                       size_t * n_token_count_out);
@ctypes_function(
    "llama_state_load_file",
    [
        llama_context_p_ctypes,
        ctypes.c_char_p,
        llama_token_p,
        ctypes.c_size_t,
        ctypes.POINTER(ctypes.c_size_t),
    ],
    ctypes.c_bool,
)
def llama_state_load_file(
    ctx: llama_context_p,
    path_session: bytes,
    tokens_out: CtypesArray[llama_token],
    n_token_capacity: Union[ctypes.c_size_t, int],
    n_token_count_out: CtypesPointerOrRef[ctypes.c_size_t],
    /,
) -> bool: ...


# LLAMA_API DEPRECATED(bool llama_load_session_file(
#         struct llama_context * ctx,
#                   const char * path_session,
#                  llama_token * tokens_out,
#                       size_t   n_token_capacity,
#                       size_t * n_token_count_out),
#     "use llama_state_load_file instead");
@ctypes_function(
    "llama_load_session_file",
    [
        llama_context_p_ctypes,
        ctypes.c_char_p,
        llama_token_p,
        ctypes.c_size_t,
        ctypes.POINTER(ctypes.c_size_t),
    ],
    ctypes.c_size_t,
)
def llama_load_session_file(
    ctx: llama_context_p,
    path_session: bytes,
    tokens_out: CtypesArray[llama_token],
    n_token_capacity: Union[ctypes.c_size_t, int],
    n_token_count_out: CtypesPointerOrRef[ctypes.c_size_t],
    /,
) -> int: ...


# LLAMA_API bool llama_state_save_file(
#         struct llama_context * ctx,
#                   const char * path_session,
#            const llama_token * tokens,
#                       size_t   n_token_count);
@ctypes_function(
    "llama_state_save_file",
    [
        llama_context_p_ctypes,
        ctypes.c_char_p,
        llama_token_p,
        ctypes.c_size_t,
    ],
    ctypes.c_bool,
)
def llama_state_save_file(
    ctx: llama_context_p,
    path_session: bytes,
    tokens: CtypesArray[llama_token],
    n_token_count: Union[ctypes.c_size_t, int],
    /,
) -> bool: ...


# LLAMA_API DEPRECATED(bool llama_save_session_file(
#         struct llama_context * ctx,
#                   const char * path_session,
#            const llama_token * tokens,
#                       size_t   n_token_count),
#     "use llama_state_save_file instead");
@ctypes_function(
    "llama_save_session_file",
    [
        llama_context_p_ctypes,
        ctypes.c_char_p,
        llama_token_p,
        ctypes.c_size_t,
    ],
    ctypes.c_size_t,
)
def llama_save_session_file(
    ctx: llama_context_p,
    path_session: bytes,
    tokens: CtypesArray[llama_token],
    n_token_count: Union[ctypes.c_size_t, int],
    /,
) -> int: ...


# // Get the exact size needed to copy the KV cache of a single sequence
# LLAMA_API size_t llama_state_seq_get_size(
#         struct llama_context * ctx,
#                 llama_seq_id   seq_id);
@ctypes_function(
    "llama_state_seq_get_size",
    [llama_context_p_ctypes, llama_seq_id],
    ctypes.c_size_t,
)
def llama_state_seq_get_size(ctx: llama_context_p, seq_id: llama_seq_id, /) -> int:
    """Get the exact size needed to copy the KV cache of a single sequence"""
    ...


# // Copy the KV cache of a single sequence into the specified buffer
# LLAMA_API size_t llama_state_seq_get_data(
#         struct llama_context * ctx,
#                      uint8_t * dst,
#                 llama_seq_id   seq_id);
@ctypes_function(
    "llama_state_seq_get_data",
    [llama_context_p_ctypes, ctypes.POINTER(ctypes.c_uint8), llama_seq_id],
    ctypes.c_size_t,
)
def llama_state_seq_get_data(
    ctx: llama_context_p, dst: CtypesArray[ctypes.c_uint8], seq_id: llama_seq_id, /
) -> int:
    """Copy the KV cache of a single sequence into the specified buffer"""
    ...


# // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
# // Returns:
# //  - Positive: Ok
# //  - Zero: Failed to load
# LLAMA_API size_t llama_state_seq_set_data(
#         struct llama_context * ctx,
#                const uint8_t * src,
#                 llama_seq_id   dest_seq_id);
@ctypes_function(
    "llama_state_seq_set_data",
    [llama_context_p_ctypes, ctypes.POINTER(ctypes.c_uint8), llama_seq_id],
    ctypes.c_size_t,
)
def llama_state_seq_set_data(
    ctx: llama_context_p, src: CtypesArray[ctypes.c_uint8], dest_seq_id: llama_seq_id, /
) -> int:
    """Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence"""
    ...


# LLAMA_API size_t llama_state_seq_save_file(
#         struct llama_context * ctx,
#                   const char * filepath,
#                 llama_seq_id   seq_id,
#            const llama_token * tokens,
#                       size_t   n_token_count);
@ctypes_function(
    "llama_state_seq_save_file",
    [
        llama_context_p_ctypes,
        ctypes.c_char_p,
        llama_seq_id,
        llama_token_p,
        ctypes.c_size_t,
    ],
    ctypes.c_size_t,
)
def llama_state_seq_save_file(
    ctx: llama_context_p,
    filepath: bytes,
    seq_id: llama_seq_id,
    tokens: CtypesArray[llama_token],
    n_token_count: Union[ctypes.c_size_t, int],
    /,
) -> int: ...


# LLAMA_API size_t llama_state_seq_load_file(
#         struct llama_context * ctx,
#                   const char * filepath,
#                 llama_seq_id   dest_seq_id,
#                  llama_token * tokens_out,
#                       size_t   n_token_capacity,
#                       size_t * n_token_count_out);
@ctypes_function(
    "llama_state_seq_load_file",
    [
        llama_context_p_ctypes,
        ctypes.c_char_p,
        llama_seq_id,
        llama_token_p,
        ctypes.c_size_t,
        ctypes.POINTER(ctypes.c_size_t),
    ],
    ctypes.c_size_t,
)
def llama_state_seq_load_file(
    ctx: llama_context_p,
    filepath: bytes,
    dest_seq_id: llama_seq_id,
    tokens_out: CtypesArray[llama_token],
    n_token_capacity: Union[ctypes.c_size_t, int],
    n_token_count_out: CtypesPointerOrRef[ctypes.c_size_t],
    /,
) -> int: ...


# //
# // Decoding
# //


# // Return batch for single sequence of tokens starting at pos_0
# //
# // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
# //
# LLAMA_API struct llama_batch llama_batch_get_one(
#               llama_token * tokens,
#                   int32_t   n_tokens,
#                 llama_pos   pos_0,
#              llama_seq_id   seq_id);
@ctypes_function(
    "llama_batch_get_one",
    [
        llama_token_p,
        ctypes.c_int,
        llama_pos,
        llama_seq_id,
    ],
    llama_batch,
)
def llama_batch_get_one(
    tokens: CtypesArray[llama_token],
    n_tokens: Union[ctypes.c_int, int],
    pos_0: Union[llama_pos, int],
    seq_id: llama_seq_id,
    /,
) -> llama_batch:
    """Return batch for single sequence of tokens starting at pos_0

    NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
    """
    ...


# // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
# // Each token can be assigned up to n_seq_max sequence ids
# // The batch has to be freed with llama_batch_free()
# // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
# // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
# // The rest of the llama_batch members are allocated with size n_tokens
# // All members are left uninitialized
# LLAMA_API struct llama_batch llama_batch_init(
#         int32_t n_tokens,
#         int32_t embd,
#         int32_t n_seq_max);
@ctypes_function(
    "llama_batch_init", [ctypes.c_int32, ctypes.c_int32, ctypes.c_int32], llama_batch
)
def llama_batch_init(
    n_tokens: Union[ctypes.c_int32, int],
    embd: Union[ctypes.c_int32, int],
    n_seq_max: Union[ctypes.c_int32, int],
    /,
) -> llama_batch:
    """Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
    Each token can be assigned up to n_seq_max sequence ids
    The batch has to be freed with llama_batch_free()
    If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
    Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
    The rest of the llama_batch members are allocated with size n_tokens
    All members are left uninitialized"""
    ...


# // Frees a batch of tokens allocated with llama_batch_init()
# LLAMA_API void llama_batch_free(struct llama_batch batch);
@ctypes_function("llama_batch_free", [llama_batch], None)
def llama_batch_free(batch: llama_batch, /):
    """Frees a batch of tokens allocated with llama_batch_init()"""
    ...


# // Positive return values does not mean a fatal error, but rather a warning.
# //   0 - success
# //   1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
# // < 0 - error
# LLAMA_API int32_t llama_decode(
#         struct llama_context * ctx,
#           struct llama_batch   batch);
@ctypes_function("llama_decode", [llama_context_p_ctypes, llama_batch], ctypes.c_int32)
def llama_decode(ctx: llama_context_p, batch: llama_batch, /) -> int:
    """Positive return values does not mean a fatal error, but rather a warning.
    0 - success
    1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
    < 0 - error"""
    ...


# // Set the number of threads used for decoding
# // n_threads is the number of threads used for generation (single token)
# // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
# LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
@ctypes_function(
    "llama_set_n_threads",
    [
        llama_context_p_ctypes,
        ctypes.c_uint32,
        ctypes.c_uint32,
    ],
    None,
)
def llama_set_n_threads(
    ctx: llama_context_p,
    n_threads: Union[ctypes.c_uint32, int],
    n_threads_batch: Union[ctypes.c_uint32, int],
    /,
):
    """Set the number of threads used for decoding
    n_threads is the number of threads used for generation (single token)
    n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
    """
    ...


# // Set whether to use causal attention or not
# // If set to true, the model will only attend to the past tokens
# LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
@ctypes_function("llama_set_causal_attn", [llama_context_p_ctypes, ctypes.c_bool], None)
def llama_set_causal_attn(ctx: llama_context_p, causal_attn: bool, /):
    """Set whether to use causal attention or not
    If set to true, the model will only attend to the past tokens"""
    ...


# // Set abort callback
# LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
@ctypes_function(
    "llama_set_abort_callback",
    [llama_context_p_ctypes, ggml_abort_callback, ctypes.c_void_p],
    None,
)
def llama_set_abort_callback(
    ctx: llama_context_p,
    abort_callback: Callable[[ctypes.c_void_p], None],
    abort_callback_data: ctypes.c_void_p,
    /,
):
    """Set abort callback"""
    ...


# // Wait until all computations are finished
# // This is automatically done when using one of the functions below to obtain the computation results
# // and is not necessary to call it explicitly in most cases
# LLAMA_API void llama_synchronize(struct llama_context * ctx);
@ctypes_function("llama_synchronize", [llama_context_p_ctypes], None)
def llama_synchronize(ctx: llama_context_p, /):
    """Wait until all computations are finished
    This is automatically done when using one of the functions below to obtain the computation results
    and is not necessary to call it explicitly in most cases"""
    ...


# // Token logits obtained from the last call to llama_decode()
# // The logits for which llama_batch.logits[i] != 0 are stored contiguously
# // in the order they have appeared in the batch.
# // Rows: number of tokens for which llama_batch.logits[i] != 0
# // Cols: n_vocab
# LLAMA_API float * llama_get_logits(struct llama_context * ctx);
@ctypes_function(
    "llama_get_logits", [llama_context_p_ctypes], ctypes.POINTER(ctypes.c_float)
)
def llama_get_logits(ctx: llama_context_p, /) -> CtypesArray[ctypes.c_float]:
    """Token logits obtained from the last call to llama_eval()
    The logits for the last token are stored in the last row
    Logits for which llama_batch.logits[i] == 0 are undefined
    Rows: n_tokens provided with llama_batch
    Cols: n_vocab

    Returns:
        Pointer to the logits buffer of shape (n_tokens, n_vocab)"""
    ...


# // Logits for the ith token. For positive indices, Equivalent to:
# // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
# // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
# // returns NULL for invalid ids.
# LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
@ctypes_function(
    "llama_get_logits_ith",
    [llama_context_p_ctypes, ctypes.c_int32],
    ctypes.POINTER(ctypes.c_float),
)
def llama_get_logits_ith(
    ctx: llama_context_p, i: Union[ctypes.c_int32, int], /
) -> CtypesArray[ctypes.c_float]:
    """Logits for the ith token. Equivalent to:
    llama_get_logits(ctx) + i*n_vocab"""
    ...


# // Get all output token embeddings.
# // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
# // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
# // in the order they have appeared in the batch.
# // shape: [n_outputs*n_embd]
# // Otherwise, returns NULL.
# LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
@ctypes_function(
    "llama_get_embeddings", [llama_context_p_ctypes], ctypes.POINTER(ctypes.c_float)
)
def llama_get_embeddings(ctx: llama_context_p, /) -> CtypesArray[ctypes.c_float]:
    """Get the embeddings for the input
    shape: [n_embd] (1-dimensional)"""
    ...


# // Get the embeddings for the ith token. For positive indices, Equivalent to:
# // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
# // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
# // shape: [n_embd] (1-dimensional)
# // returns NULL for invalid ids.
# LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
@ctypes_function(
    "llama_get_embeddings_ith",
    [llama_context_p_ctypes, ctypes.c_int32],
    ctypes.POINTER(ctypes.c_float),
)
def llama_get_embeddings_ith(
    ctx: llama_context_p, i: Union[ctypes.c_int32, int], /
) -> CtypesArray[ctypes.c_float]:
    """Get the embeddings for the ith sequence
    llama_get_embeddings(ctx) + i*n_embd"""
    ...


# // Get the embeddings for a sequence id
# // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
# // shape: [n_embd] (1-dimensional)
# LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
@ctypes_function(
    "llama_get_embeddings_seq",
    [llama_context_p_ctypes, llama_seq_id],
    ctypes.POINTER(ctypes.c_float),
)
def llama_get_embeddings_seq(
    ctx: llama_context_p, seq_id: Union[llama_seq_id, int], /
) -> CtypesArray[ctypes.c_float]:
    """Get the embeddings for a sequence id
    Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
    shape: [n_embd] (1-dimensional)"""
    ...


# //
# // Vocab
# //


# LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
@ctypes_function(
    "llama_token_get_text", [llama_model_p_ctypes, llama_token], ctypes.c_char_p
)
def llama_token_get_text(
    model: llama_model_p, token: Union[llama_token, int], /
) -> bytes: ...


# LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
@ctypes_function(
    "llama_token_get_score", [llama_model_p_ctypes, llama_token], ctypes.c_float
)
def llama_token_get_score(
    model: llama_model_p, token: Union[llama_token, int], /
) -> float: ...


# LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
@ctypes_function(
    "llama_token_get_type", [llama_model_p_ctypes, llama_token], ctypes.c_int
)
def llama_token_get_type(
    model: llama_model_p, token: Union[llama_token, int], /
) -> int: ...


# // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
# LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
@ctypes_function(
    "llama_token_is_eog", [llama_model_p_ctypes, llama_token], ctypes.c_bool
)
def llama_token_is_eog(model: llama_model_p, token: Union[llama_token, int], /) -> bool:
    """Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)"""
    ...


# // Special tokens


# LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
@ctypes_function("llama_token_bos", [llama_model_p_ctypes], llama_token)
def llama_token_bos(model: llama_model_p, /) -> int:
    """beginning-of-sentence"""
    ...


# LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
@ctypes_function("llama_token_eos", [llama_model_p_ctypes], llama_token)
def llama_token_eos(model: llama_model_p, /) -> int:
    """end-of-sentence"""
    ...


# LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
@ctypes_function("llama_token_cls", [llama_model_p_ctypes], llama_token)
def llama_token_cls(model: llama_model_p, /) -> int:
    """classification"""
    ...


# LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
@ctypes_function("llama_token_sep", [llama_model_p_ctypes], llama_token)
def llama_token_sep(model: llama_model_p, /) -> int:
    """sentence separator"""
    ...


# LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
@ctypes_function("llama_token_nl", [llama_model_p_ctypes], llama_token)
def llama_token_nl(model: llama_model_p, /) -> int:
    """next-line"""
    ...


# // Returns -1 if unknown, 1 for true or 0 for false.
# LLAMA_API int32_t         llama_add_bos_token(const struct llama_model * model);
@ctypes_function("llama_add_bos_token", [llama_model_p_ctypes], ctypes.c_int32)
def llama_add_bos_token(model: llama_model_p, /) -> int:
    """Returns -1 if unknown, 1 for true or 0 for false."""
    ...


# // Returns -1 if unknown, 1 for true or 0 for false.
# LLAMA_API int32_t         llama_add_eos_token(const struct llama_model * model);
@ctypes_function("llama_add_eos_token", [llama_model_p_ctypes], ctypes.c_int32)
def llama_add_eos_token(model: llama_model_p, /) -> int:
    """Returns -1 if unknown, 1 for true or 0 for false."""
    ...


# // Codellama infill tokens
# LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
@ctypes_function("llama_token_prefix", [llama_model_p_ctypes], llama_token)
def llama_token_prefix(model: llama_model_p) -> int:
    """codellama infill tokens"""
    ...


# LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
@ctypes_function("llama_token_middle", [llama_model_p_ctypes], llama_token)
def llama_token_middle(model: llama_model_p, /) -> int: ...


# LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
@ctypes_function("llama_token_suffix", [llama_model_p_ctypes], llama_token)
def llama_token_suffix(model: llama_model_p, /) -> int: ...


# LLAMA_API llama_token llama_token_eot   (const struct llama_model * model); // End of infill middle
@ctypes_function("llama_token_eot", [llama_model_p_ctypes], llama_token)
def llama_token_eot(model: llama_model_p, /) -> int: ...


# //
# // Tokenization
# //


# /// @details Convert the provided text into tokens.
# /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
# /// @return Returns the number of tokens on success, no more than n_tokens_max
# /// @return Returns a negative number on failure - the number of tokens that would have been returned
# /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
# ///                      as plaintext. Does not insert a leading space.
# LLAMA_API int32_t llama_tokenize(
#     const struct llama_model * model,
#                   const char * text,
#                      int32_t   text_len,
#                  llama_token * tokens,
#                      int32_t   n_tokens_max,
#                         bool   add_special,
#                         bool   parse_special);
@ctypes_function(
    "llama_tokenize",
    [
        llama_model_p_ctypes,
        ctypes.c_char_p,
        ctypes.c_int32,
        llama_token_p,
        ctypes.c_int32,
        ctypes.c_bool,
        ctypes.c_bool,
    ],
    ctypes.c_int32,
)
def llama_tokenize(
    model: llama_model_p,
    text: bytes,
    text_len: Union[ctypes.c_int, int],
    tokens: CtypesArray[llama_token],
    n_tokens_max: Union[ctypes.c_int, int],
    add_special: Union[ctypes.c_bool, bool],
    parse_special: Union[ctypes.c_bool, bool],
    /,
) -> int:
    """Convert the provided text into tokens.

    Args:
        model: The model to use for tokenization.
        text: The text to tokenize.
        text_len: The length of the text.
        tokens: The tokens pointer must be large enough to hold the resulting tokens.
        n_max_tokens: The maximum number of tokens to return.
        add_special: Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext. Does not insert a leading space.
        parse_special: Allow parsing special tokens.

    Returns:
        Returns the number of tokens on success, no more than n_tokens_max
        Returns a negative number on failure - the number of tokens that would have been returned
    """
    ...


# // Token Id -> Piece.
# // Uses the vocabulary in the provided context.
# // Does not write null terminator to the buffer.
# // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
# // @param special If true, special tokens are rendered in the output.
# LLAMA_API int32_t llama_token_to_piece(
#           const struct llama_model * model,
#                        llama_token   token,
#                               char * buf,
#                            int32_t   length,
#                               bool   special);
@ctypes_function(
    "llama_token_to_piece",
    [
        llama_model_p_ctypes,
        llama_token,
        ctypes.c_char_p,
        ctypes.c_int32,
        ctypes.c_bool,
    ],
    ctypes.c_int32,
)
def llama_token_to_piece(
    model: llama_model_p,
    token: Union[llama_token, int],
    buf: Union[ctypes.c_char_p, bytes, CtypesArray[ctypes.c_char]],
    length: Union[ctypes.c_int, int],
    special: Union[ctypes.c_bool, bool],
    /,
) -> int:
    """Token Id -> Piece.
    Uses the vocabulary in the provided context.
    Does not write null terminator to the buffer.
    User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.

    Args:
        model: The model to use for tokenization.
        token: The token to convert.
        buf: The buffer to write the token to.
        length: The length of the buffer.
        special: If true, special tokens are rendered in the output."""
    ...


# /// Apply chat template. Inspired by hf apply_chat_template() on python.
# /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
# /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
# /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
# /// @param chat Pointer to a list of multiple llama_chat_message
# /// @param n_msg Number of llama_chat_message in this chat
# /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
# /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
# /// @param length The size of the allocated buffer
# /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
# LLAMA_API int32_t llama_chat_apply_template(
#           const struct llama_model * model,
#                         const char * tmpl,
#    const struct llama_chat_message * chat,
#                             size_t   n_msg,
#                               bool   add_ass,
#                               char * buf,
#                            int32_t   length);
@ctypes_function(
    "llama_chat_apply_template",
    [
        ctypes.c_void_p,
        ctypes.c_char_p,
        ctypes.POINTER(llama_chat_message),
        ctypes.c_size_t,
    ],
    ctypes.c_int32,
)
def llama_chat_apply_template(
    model: llama_model_p,
    tmpl: bytes,
    chat: CtypesArray[llama_chat_message],
    n_msg: int,
    /,
) -> int: ...


# //
# // Grammar
# //


# LLAMA_API struct llama_grammar * llama_grammar_init(
#         const llama_grammar_element ** rules,
#                                 size_t    n_rules,
#                                 size_t    start_rule_index);
@ctypes_function(
    "llama_grammar_init",
    [
        ctypes.POINTER(llama_grammar_element_p),
        ctypes.c_size_t,
        ctypes.c_size_t,
    ],
    llama_grammar_p,
)
def llama_grammar_init(
    rules: CtypesArray[
        CtypesPointer[llama_grammar_element]
    ],  # NOTE: This might be wrong type sig
    n_rules: Union[ctypes.c_size_t, int],
    start_rule_index: Union[ctypes.c_size_t, int],
    /,
) -> llama_grammar_p:
    """Initialize a grammar from a set of rules."""
    ...


# LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
@ctypes_function(
    "llama_grammar_free",
    [llama_grammar_p],
    None,
)
def llama_grammar_free(grammar: llama_grammar_p, /):
    """Free a grammar."""
    ...


# LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
@ctypes_function(
    "llama_grammar_copy",
    [llama_grammar_p],
    llama_grammar_p,
)
def llama_grammar_copy(grammar: llama_grammar_p, /) -> llama_grammar_p:
    """Copy a grammar."""
    ...


# //
# // Sampling functions
# //


# // Sets the current rng seed.
# LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
@ctypes_function(
    "llama_set_rng_seed",
    [llama_context_p_ctypes, ctypes.c_uint32],
    None,
)
def llama_set_rng_seed(ctx: llama_context_p, seed: Union[ctypes.c_uint32, int], /):
    """Sets the current rng seed."""
    ...


# /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
# /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
# LLAMA_API void llama_sample_repetition_penalties(
#         struct llama_context * ctx,
#       llama_token_data_array * candidates,
#            const llama_token * last_tokens,
#                       size_t   penalty_last_n,
#                        float   penalty_repeat,
#                        float   penalty_freq,
#                        float   penalty_present);
@ctypes_function(
    "llama_sample_repetition_penalties",
    [
        llama_context_p_ctypes,
        llama_token_data_array_p,
        llama_token_p,
        ctypes.c_size_t,
        ctypes.c_float,
        ctypes.c_float,
        ctypes.c_float,
    ],
    None,
)
def llama_sample_repetition_penalties(
    ctx: llama_context_p,
    candidates: Union[
        CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
    ],
    last_tokens_data: CtypesArray[llama_token],
    penalty_last_n: Union[ctypes.c_size_t, int],
    penalty_repeat: Union[ctypes.c_float, float],
    penalty_freq: Union[ctypes.c_float, float],
    penalty_present: Union[ctypes.c_float, float],
    /,
):
    """Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
    Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
    """
    ...


# /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
# /// @param logits Logits extracted from the original generation context.
# /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
# /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
# LLAMA_API void llama_sample_apply_guidance(
#           struct llama_context * ctx,
#                          float * logits,
#                          float * logits_guidance,
#                          float   scale);
@ctypes_function(
    "llama_sample_apply_guidance",
    [
        llama_context_p_ctypes,
        ctypes.POINTER(ctypes.c_float),
        ctypes.POINTER(ctypes.c_float),
        ctypes.c_float,
    ],
    None,
)
def llama_sample_apply_guidance(
    ctx: llama_context_p,
    logits: CtypesArray[ctypes.c_float],
    logits_guidance: CtypesArray[ctypes.c_float],
    scale: Union[ctypes.c_float, float],
    /,
):
    """Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806"""
    ...


# /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
# LLAMA_API void llama_sample_softmax(
#         struct llama_context * ctx,
#       llama_token_data_array * candidates);
@ctypes_function(
    "llama_sample_softmax",
    [llama_context_p_ctypes, llama_token_data_array_p],
    None,
)
def llama_sample_softmax(
    ctx: llama_context_p,
    candidates: Union[
        CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
    ],
    /,
):
    """Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits."""
    ...


# /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
# LLAMA_API void llama_sample_top_k(
#         struct llama_context * ctx,
#       llama_token_data_array * candidates,
#                      int32_t   k,
#                       size_t   min_keep);
@ctypes_function(
    "llama_sample_top_k",
    [llama_context_p_ctypes, llama_token_data_array_p, ctypes.c_int32, ctypes.c_size_t],
    None,
)
def llama_sample_top_k(
    ctx: llama_context_p,
    candidates: Union[
        CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
    ],
    k: Union[ctypes.c_int, int],
    min_keep: Union[ctypes.c_size_t, int],
    /,
):
    """Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751"""
    ...


# /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
# LLAMA_API void llama_sample_top_p(
#         struct llama_context * ctx,
#       llama_token_data_array * candidates,
#                        float   p,
#                       size_t   min_keep);
@ctypes_function(
    "llama_sample_top_p",
    [llama_context_p_ctypes, llama_token_data_array_p, ctypes.c_float, ctypes.c_size_t],
    None,
)
def llama_sample_top_p(
    ctx: llama_context_p,
    candidates: Union[
        CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
    ],
    p: Union[ctypes.c_float, float],
    min_keep: Union[ctypes.c_size_t, int],
    /,
):
    """Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751"""
    ...


# /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
# LLAMA_API void llama_sample_min_p(
#         struct llama_context * ctx,
#       llama_token_data_array * candidates,
#                        float   p,
#                       size_t   min_keep);
@ctypes_function(
    "llama_sample_min_p",
    [llama_context_p_ctypes, llama_token_data_array_p, ctypes.c_float, ctypes.c_size_t],
    None,
)
def llama_sample_min_p(
    ctx: llama_context_p,
    candidates: Union[
        CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
    ],
    p: Union[ctypes.c_float, float],
    min_keep: Union[ctypes.c_size_t, int],
    /,
):
    """Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841"""
    ...


# /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
# LLAMA_API void llama_sample_tail_free(
#         struct llama_context * ctx,
#       llama_token_data_array * candidates,
#                        float   z,
#                       size_t   min_keep);
@ctypes_function(
    "llama_sample_tail_free",
    [llama_context_p_ctypes, llama_token_data_array_p, ctypes.c_float, ctypes.c_size_t],
    None,
)
def llama_sample_tail_free(
    ctx: llama_context_p,
    candidates: Union[
        CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
    ],
    z: Union[ctypes.c_float, float],
    min_keep: Union[ctypes.c_size_t, int],
    /,
):
    """Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/."""
    ...


# /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
# LLAMA_API void llama_sample_typical(
#         struct llama_context * ctx,
#       llama_token_data_array * candidates,
#                        float   p,
#                       size_t   min_keep);
@ctypes_function(
    "llama_sample_typical",
    [llama_context_p_ctypes, llama_token_data_array_p, ctypes.c_float, ctypes.c_size_t],
    None,
)
def llama_sample_typical(
    ctx: llama_context_p,
    candidates: Union[
        CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
    ],
    p: Union[ctypes.c_float, float],
    min_keep: Union[ctypes.c_size_t, int],
    /,
):
    """Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666."""
    ...


# /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
# LLAMA_API void llama_sample_entropy(
#         struct llama_context * ctx,
#       llama_token_data_array * candidates_p,
#                        float   min_temp,
#                        float   max_temp,
#                        float   exponent_val);
@ctypes_function(
    "llama_sample_entropy",
    [
        llama_context_p_ctypes,
        llama_token_data_array_p,
        ctypes.c_float,
        ctypes.c_float,
        ctypes.c_float,
    ],
    None,
)
def llama_sample_entropy(
    ctx: llama_context_p,
    candidates: Union[
        CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
    ],
    min_temp: Union[ctypes.c_float, float],
    max_temp: Union[ctypes.c_float, float],
    exponent_val: Union[ctypes.c_float, float],
    /,
):
    """Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772."""
    ...


# LLAMA_API void llama_sample_temp(
#         struct llama_context * ctx,
#       llama_token_data_array * candidates,
#                        float   temp);
@ctypes_function(
    "llama_sample_temp",
    [llama_context_p_ctypes, llama_token_data_array_p, ctypes.c_float],
    None,
)
def llama_sample_temp(
    ctx: llama_context_p,
    candidates: Union[
        CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
    ],
    temp: Union[ctypes.c_float, float],
    /,
):
    """Temperature sampling described in academic paper "Generating Long Sequences with Sparse Transformers" https://arxiv.org/abs/1904.10509

    Parameters:
        candidates: A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
        temp: The temperature value to use for the sampling. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
    """
    ...


# /// @details Apply constraints from grammar
# LLAMA_API void llama_sample_grammar(
#         struct llama_context * ctx,
#       llama_token_data_array * candidates,
#   const struct llama_grammar * grammar);
@ctypes_function(
    "llama_sample_grammar",
    [llama_context_p_ctypes, llama_token_data_array_p, llama_grammar_p],
    None,
)
def llama_sample_grammar(
    ctx: llama_context_p,
    candidates: Union[
        CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
    ],
    grammar,  # type: llama_grammar_p
    /,
):
    """Apply constraints from grammar

    Parameters:
        candidates: A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
        grammar: A grammar object containing the rules and constraints to apply to the generated text.
    """
    ...


# /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
# /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
# /// @param tau  The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
# /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
# /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
# /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
# LLAMA_API llama_token llama_sample_token_mirostat(
#         struct llama_context * ctx,
#       llama_token_data_array * candidates,
#                        float   tau,
#                        float   eta,
#                      int32_t   m,
#                        float * mu);
@ctypes_function(
    "llama_sample_token_mirostat",
    [
        llama_context_p_ctypes,
        llama_token_data_array_p,
        ctypes.c_float,
        ctypes.c_float,
        ctypes.c_int32,
        ctypes.POINTER(ctypes.c_float),
    ],
    llama_token,
)
def llama_sample_token_mirostat(
    ctx: llama_context_p,
    candidates: Union[
        CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
    ],
    tau: Union[ctypes.c_float, float],
    eta: Union[ctypes.c_float, float],
    m: Union[ctypes.c_int, int],
    mu: CtypesPointerOrRef[ctypes.c_float],
    /,
) -> int:
    """Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.

    Parameters:
        candidates: A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
        tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
        eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
        m: The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
        mu: Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
    """
    ...


# /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
# /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
# /// @param tau  The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
# /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
# /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
# LLAMA_API llama_token llama_sample_token_mirostat_v2(
#         struct llama_context * ctx,
#       llama_token_data_array * candidates,
#                        float   tau,
#                        float   eta,
#                        float * mu);
@ctypes_function(
    "llama_sample_token_mirostat_v2",
    [
        llama_context_p_ctypes,
        llama_token_data_array_p,
        ctypes.c_float,
        ctypes.c_float,
        ctypes.POINTER(ctypes.c_float),
    ],
    llama_token,
)
def llama_sample_token_mirostat_v2(
    ctx: llama_context_p,
    candidates: Union[
        CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
    ],
    tau: Union[ctypes.c_float, float],
    eta: Union[ctypes.c_float, float],
    mu: CtypesPointerOrRef[ctypes.c_float],
    /,
) -> int:
    """Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.

    Parameters:
        candidates: A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
        tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
        eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
        mu: Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
    """
    ...


# /// @details Selects the token with the highest probability.
# ///          Does not compute the token probabilities. Use llama_sample_softmax() instead.
# LLAMA_API llama_token llama_sample_token_greedy(
#         struct llama_context * ctx,
#       llama_token_data_array * candidates);
@ctypes_function(
    "llama_sample_token_greedy",
    [llama_context_p_ctypes, llama_token_data_array_p],
    llama_token,
)
def llama_sample_token_greedy(
    ctx: llama_context_p,
    candidates: Union[
        CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
    ],
    /,
) -> int:
    """Selects the token with the highest probability."""
    ...


# /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
# LLAMA_API llama_token llama_sample_token(
#         struct llama_context * ctx,
#       llama_token_data_array * candidates);
@ctypes_function(
    "llama_sample_token",
    [llama_context_p_ctypes, llama_token_data_array_p],
    llama_token,
)
def llama_sample_token(
    ctx: llama_context_p,
    candidates: Union[
        CtypesArray[llama_token_data_array], CtypesPointerOrRef[llama_token_data_array]
    ],
    /,
) -> int:
    """Randomly selects a token from the candidates based on their probabilities."""
    ...


# /// @details Accepts the sampled token into the grammar
# LLAMA_API void llama_grammar_accept_token(
#         struct llama_context * ctx,
#         struct llama_grammar * grammar,
#                  llama_token   token);
@ctypes_function(
    "llama_grammar_accept_token",
    [llama_context_p_ctypes, llama_grammar_p, llama_token],
    None,
)
def llama_grammar_accept_token(
    ctx: llama_context_p, grammar: llama_grammar_p, token: Union[llama_token, int], /
) -> None:
    """Accepts the sampled token into the grammar"""
    ...


# //
# // Beam search
# //

# struct llama_beam_view {
#     const llama_token * tokens;


#     size_t n_tokens;
#     float  p;        // Cumulative beam probability (renormalized relative to all beams)
#     bool   eob;      // Callback should set this to true when a beam is at end-of-beam.
# };
class llama_beam_view(ctypes.Structure):
    if TYPE_CHECKING:
        tokens: CtypesArray[llama_token]
        n_tokens: int
        p: float
        eob: bool

    _fields_ = [
        ("tokens", llama_token_p),
        ("n_tokens", ctypes.c_size_t),
        ("p", ctypes.c_float),
        ("eob", ctypes.c_bool),
    ]


# // Passed to beam_search_callback function.
# // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
# // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
# // These pointers are valid only during the synchronous callback, so should not be saved.
# struct llama_beams_state {
#     struct llama_beam_view * beam_views;
#     size_t n_beams;               // Number of elements in beam_views[].
#     size_t common_prefix_length;  // Current max length of prefix tokens shared by all beams.
#     bool   last_call;             // True iff this is the last callback invocation.
# };
class llama_beams_state(ctypes.Structure):
    if TYPE_CHECKING:
        beam_views: CtypesArray[llama_beam_view]
        n_beams: int
        common_prefix_length: int
        last_call: bool

    _fields_ = [
        ("beam_views", ctypes.POINTER(llama_beam_view)),
        ("n_beams", ctypes.c_size_t),
        ("common_prefix_length", ctypes.c_size_t),
        ("last_call", ctypes.c_bool),
    ]


# // Type of pointer to the beam_search_callback function.
# // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
# // passed back to beam_search_callback. This avoids having to use global variables in the callback.
# typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
llama_beam_search_callback_fn_t = ctypes.CFUNCTYPE(
    None, ctypes.c_void_p, llama_beams_state
)


# /// @details Deterministically returns entire sentence constructed by a beam search.
# /// @param ctx Pointer to the llama_context.
# /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
# /// @param callback_data A pointer that is simply passed back to callback.
# /// @param n_beams Number of beams to use.
# /// @param n_past Number of tokens already evaluated.
# /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
# /// @param n_threads Number of threads as passed to llama_eval().
# LLAMA_API void llama_beam_search(
#                struct llama_context * ctx,
#     llama_beam_search_callback_fn_t   callback,
#                                void * callback_data,
#                              size_t   n_beams,
#                             int32_t   n_past,
#                             int32_t   n_predict);
@ctypes_function(
    "llama_beam_search",
    [
        llama_context_p_ctypes,
        llama_beam_search_callback_fn_t,
        ctypes.c_void_p,
        ctypes.c_size_t,
        ctypes.c_int32,
        ctypes.c_int32,
    ],
    None,
)
def llama_beam_search(
    ctx: llama_context_p,
    callback: CtypesFuncPointer,
    callback_data: ctypes.c_void_p,
    n_beams: Union[ctypes.c_size_t, int],
    n_past: Union[ctypes.c_int, int],
    n_predict: Union[ctypes.c_int, int],
    /,
): ...


# /// @details Build a split GGUF final path for this chunk.
# ///          llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
# //  Returns the split_path length.
# LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
@ctypes_function(
    "llama_split_path",
    [ctypes.c_char_p, ctypes.c_size_t, ctypes.c_char_p, ctypes.c_int, ctypes.c_int],
    ctypes.c_int,
)
def llama_split_path(
    split_path: bytes,
    maxlen: Union[ctypes.c_size_t, int],
    path_prefix: bytes,
    split_no: Union[ctypes.c_int, int],
    split_count: Union[ctypes.c_int, int],
    /,
) -> int:
    """Build a split GGUF final path for this chunk."""
    ...


# /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
# ///          llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
# //  Returns the split_prefix length.
# LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
@ctypes_function(
    "llama_split_prefix",
    [ctypes.c_char_p, ctypes.c_size_t, ctypes.c_char_p, ctypes.c_int, ctypes.c_int],
    ctypes.c_int,
)
def llama_split_prefix(
    split_prefix: bytes,
    maxlen: Union[ctypes.c_size_t, int],
    split_path: bytes,
    split_no: Union[ctypes.c_int, int],
    split_count: Union[ctypes.c_int, int],
    /,
) -> int:
    """Extract the path prefix from the split_path if and only if the split_no and split_count match."""
    ...


# Performance information


# LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
@ctypes_function(
    "llama_get_timings",
    [llama_context_p_ctypes],
    llama_timings,
)
def llama_get_timings(ctx: llama_context_p, /) -> llama_timings:
    """Get performance information"""
    ...


# LLAMA_API void llama_print_timings(struct llama_context * ctx);
@ctypes_function(
    "llama_print_timings",
    [llama_context_p_ctypes],
    None,
)
def llama_print_timings(ctx: llama_context_p, /):
    """Print performance information"""
    ...


# LLAMA_API void llama_reset_timings(struct llama_context * ctx);
@ctypes_function(
    "llama_reset_timings",
    [llama_context_p_ctypes],
    None,
)
def llama_reset_timings(ctx: llama_context_p, /):
    """Reset performance information"""
    ...


# Print system information
# LLAMA_API const char * llama_print_system_info(void);
@ctypes_function(
    "llama_print_system_info",
    [],
    ctypes.c_char_p,
)
def llama_print_system_info() -> bytes:
    """Print system information"""
    ...


# NOTE: THIS IS CURRENTLY BROKEN AS ggml_log_callback IS NOT EXPOSED IN LLAMA.H
# // Set callback for all future logging events.
# // If this is not called, or NULL is supplied, everything is output on stderr.
# LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
@ctypes_function(
    "llama_log_set",
    [ctypes.c_void_p, ctypes.c_void_p],
    None,
)
def llama_log_set(
    log_callback: Optional[CtypesFuncPointer],
    user_data: ctypes.c_void_p,
    /,
):
    """Set callback for all future logging events.

    If this is not called, or NULL is supplied, everything is output on stderr."""
    ...


# LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
@ctypes_function(
    "llama_dump_timing_info_yaml",
    [ctypes.c_void_p, llama_context_p_ctypes],
    None,
)
def llama_dump_timing_info_yaml(stream: ctypes.c_void_p, ctx: llama_context_p, /): ...