File size: 50,731 Bytes
4bdb245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import llama_cpp"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no\n",
      "ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes\n",
      "ggml_init_cublas: found 1 CUDA devices:\n",
      "  Device 0: NVIDIA GeForce RTX 2060, compute capability 7.5\n"
     ]
    }
   ],
   "source": [
    "llama_cpp.llama_backend_init(numa=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "llama_model_loader: loaded meta data with 16 key-value pairs and 291 tensors from ../../models/mistral-7b-v0.1-GGUF/ggml-model-Q4_K.gguf (version GGUF V2)\n",
      "llama_model_loader: - tensor    0:                token_embd.weight q4_K     [  4096, 32000,     1,     1 ]\n",
      "llama_model_loader: - tensor    1:               output_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor    2:                    output.weight q6_K     [  4096, 32000,     1,     1 ]\n",
      "llama_model_loader: - tensor    3:              blk.0.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor    4:              blk.0.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor    5:              blk.0.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor    6:         blk.0.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor    7:            blk.0.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor    8:            blk.0.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor    9:              blk.0.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   10:           blk.0.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   11:            blk.0.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   12:              blk.1.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   13:              blk.1.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   14:              blk.1.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   15:         blk.1.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   16:            blk.1.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   17:            blk.1.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   18:              blk.1.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   19:           blk.1.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   20:            blk.1.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   21:              blk.2.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   22:              blk.2.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   23:              blk.2.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   24:         blk.2.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   25:            blk.2.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   26:            blk.2.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   27:              blk.2.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   28:           blk.2.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   29:            blk.2.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   30:              blk.3.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   31:              blk.3.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   32:              blk.3.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   33:         blk.3.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   34:            blk.3.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   35:            blk.3.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   36:              blk.3.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   37:           blk.3.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   38:            blk.3.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   39:              blk.4.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   40:              blk.4.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   41:              blk.4.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   42:         blk.4.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   43:            blk.4.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   44:            blk.4.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   45:              blk.4.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   46:           blk.4.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   47:            blk.4.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   48:              blk.5.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   49:              blk.5.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   50:              blk.5.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   51:         blk.5.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   52:            blk.5.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   53:            blk.5.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   54:              blk.5.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   55:           blk.5.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   56:            blk.5.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   57:              blk.6.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   58:              blk.6.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   59:              blk.6.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   60:         blk.6.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   61:            blk.6.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   62:            blk.6.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   63:              blk.6.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   64:           blk.6.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   65:            blk.6.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   66:              blk.7.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   67:              blk.7.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   68:              blk.7.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   69:         blk.7.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   70:            blk.7.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   71:            blk.7.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   72:              blk.7.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   73:           blk.7.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   74:            blk.7.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   75:              blk.8.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   76:              blk.8.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   77:              blk.8.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   78:         blk.8.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   79:            blk.8.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   80:            blk.8.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   81:              blk.8.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   82:           blk.8.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   83:            blk.8.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   84:              blk.9.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   85:              blk.9.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   86:              blk.9.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   87:         blk.9.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   88:            blk.9.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   89:            blk.9.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   90:              blk.9.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   91:           blk.9.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   92:            blk.9.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   93:             blk.10.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   94:             blk.10.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   95:             blk.10.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   96:        blk.10.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   97:           blk.10.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   98:           blk.10.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   99:             blk.10.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  100:          blk.10.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  101:           blk.10.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  102:             blk.11.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  103:             blk.11.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  104:             blk.11.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  105:        blk.11.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  106:           blk.11.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  107:           blk.11.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  108:             blk.11.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  109:          blk.11.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  110:           blk.11.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  111:             blk.12.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  112:             blk.12.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  113:             blk.12.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  114:        blk.12.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  115:           blk.12.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  116:           blk.12.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  117:             blk.12.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  118:          blk.12.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  119:           blk.12.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  120:             blk.13.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  121:             blk.13.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  122:             blk.13.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  123:        blk.13.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  124:           blk.13.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  125:           blk.13.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  126:             blk.13.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  127:          blk.13.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  128:           blk.13.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  129:             blk.14.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  130:             blk.14.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  131:             blk.14.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  132:        blk.14.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  133:           blk.14.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  134:           blk.14.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  135:             blk.14.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  136:          blk.14.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  137:           blk.14.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  138:             blk.15.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  139:             blk.15.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  140:             blk.15.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  141:        blk.15.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  142:           blk.15.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  143:           blk.15.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  144:             blk.15.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  145:          blk.15.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  146:           blk.15.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  147:             blk.16.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  148:             blk.16.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  149:             blk.16.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  150:        blk.16.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  151:           blk.16.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  152:           blk.16.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  153:             blk.16.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  154:          blk.16.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  155:           blk.16.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  156:             blk.17.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  157:             blk.17.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  158:             blk.17.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  159:        blk.17.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  160:           blk.17.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  161:           blk.17.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  162:             blk.17.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  163:          blk.17.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  164:           blk.17.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  165:             blk.18.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  166:             blk.18.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  167:             blk.18.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  168:        blk.18.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  169:           blk.18.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  170:           blk.18.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  171:             blk.18.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  172:          blk.18.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  173:           blk.18.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  174:             blk.19.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  175:             blk.19.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  176:             blk.19.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  177:        blk.19.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  178:           blk.19.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  179:           blk.19.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  180:             blk.19.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  181:          blk.19.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  182:           blk.19.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  183:             blk.20.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  184:             blk.20.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  185:             blk.20.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  186:        blk.20.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  187:           blk.20.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  188:           blk.20.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  189:             blk.20.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  190:          blk.20.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  191:           blk.20.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  192:             blk.21.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  193:             blk.21.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  194:             blk.21.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  195:        blk.21.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  196:           blk.21.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  197:           blk.21.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  198:             blk.21.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  199:          blk.21.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  200:           blk.21.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  201:             blk.22.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  202:             blk.22.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  203:             blk.22.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  204:        blk.22.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  205:           blk.22.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  206:           blk.22.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  207:             blk.22.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  208:          blk.22.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  209:           blk.22.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  210:             blk.23.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  211:             blk.23.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  212:             blk.23.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  213:        blk.23.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  214:           blk.23.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  215:           blk.23.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  216:             blk.23.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  217:          blk.23.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  218:           blk.23.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  219:             blk.24.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  220:             blk.24.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  221:             blk.24.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  222:        blk.24.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  223:           blk.24.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  224:           blk.24.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  225:             blk.24.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  226:          blk.24.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  227:           blk.24.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  228:             blk.25.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  229:             blk.25.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  230:             blk.25.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  231:        blk.25.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  232:           blk.25.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  233:           blk.25.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  234:             blk.25.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  235:          blk.25.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  236:           blk.25.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  237:             blk.26.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  238:             blk.26.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  239:             blk.26.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  240:        blk.26.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  241:           blk.26.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  242:           blk.26.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  243:             blk.26.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  244:          blk.26.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  245:           blk.26.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  246:             blk.27.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  247:             blk.27.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  248:             blk.27.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  249:        blk.27.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  250:           blk.27.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  251:           blk.27.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  252:             blk.27.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  253:          blk.27.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  254:           blk.27.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  255:             blk.28.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  256:             blk.28.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  257:             blk.28.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  258:        blk.28.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  259:           blk.28.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  260:           blk.28.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  261:             blk.28.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  262:          blk.28.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  263:           blk.28.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  264:             blk.29.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  265:             blk.29.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  266:             blk.29.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  267:        blk.29.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  268:           blk.29.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  269:           blk.29.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  270:             blk.29.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  271:          blk.29.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  272:           blk.29.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  273:             blk.30.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  274:             blk.30.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  275:             blk.30.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  276:        blk.30.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  277:           blk.30.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  278:           blk.30.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  279:             blk.30.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  280:          blk.30.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  281:           blk.30.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  282:             blk.31.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  283:             blk.31.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  284:             blk.31.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  285:        blk.31.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  286:           blk.31.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  287:           blk.31.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  288:             blk.31.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  289:          blk.31.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  290:           blk.31.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - kv   0:                       general.architecture str     \n",
      "llama_model_loader: - kv   1:                               general.name str     \n",
      "llama_model_loader: - kv   2:                       llama.context_length u32     \n",
      "llama_model_loader: - kv   3:                     llama.embedding_length u32     \n",
      "llama_model_loader: - kv   4:                          llama.block_count u32     \n",
      "llama_model_loader: - kv   5:                  llama.feed_forward_length u32     \n",
      "llama_model_loader: - kv   6:                 llama.rope.dimension_count u32     \n",
      "llama_model_loader: - kv   7:                 llama.attention.head_count u32     \n",
      "llama_model_loader: - kv   8:              llama.attention.head_count_kv u32     \n",
      "llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32     \n",
      "llama_model_loader: - kv  10:                          general.file_type u32     \n",
      "llama_model_loader: - kv  11:                       tokenizer.ggml.model str     \n",
      "llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr     \n",
      "llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr     \n",
      "llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr     \n",
      "llama_model_loader: - kv  15:               general.quantization_version u32     \n",
      "llama_model_loader: - type  f32:   65 tensors\n",
      "llama_model_loader: - type q4_K:  193 tensors\n",
      "llama_model_loader: - type q6_K:   33 tensors\n",
      "llm_load_vocab: special tokens definition check successful ( 259/32000 ).\n",
      "llm_load_print_meta: format           = GGUF V2\n",
      "llm_load_print_meta: arch             = llama\n",
      "llm_load_print_meta: vocab type       = SPM\n",
      "llm_load_print_meta: n_vocab          = 32000\n",
      "llm_load_print_meta: n_merges         = 0\n",
      "llm_load_print_meta: n_ctx_train      = 4096\n",
      "llm_load_print_meta: n_embd           = 4096\n",
      "llm_load_print_meta: n_head           = 32\n",
      "llm_load_print_meta: n_head_kv        = 8\n",
      "llm_load_print_meta: n_layer          = 32\n",
      "llm_load_print_meta: n_rot            = 128\n",
      "llm_load_print_meta: n_gqa            = 4\n",
      "llm_load_print_meta: f_norm_eps       = 0.0e+00\n",
      "llm_load_print_meta: f_norm_rms_eps   = 1.0e-05\n",
      "llm_load_print_meta: f_clamp_kqv      = 0.0e+00\n",
      "llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n",
      "llm_load_print_meta: n_ff             = 14336\n",
      "llm_load_print_meta: freq_base_train  = 10000.0\n",
      "llm_load_print_meta: freq_scale_train = 1\n",
      "llm_load_print_meta: model type       = 7B\n",
      "llm_load_print_meta: model ftype      = mostly Q4_K - Medium\n",
      "llm_load_print_meta: model params     = 7.24 B\n",
      "llm_load_print_meta: model size       = 4.07 GiB (4.83 BPW) \n",
      "llm_load_print_meta: general.name   = LLaMA v2\n",
      "llm_load_print_meta: BOS token = 1 '<s>'\n",
      "llm_load_print_meta: EOS token = 2 '</s>'\n",
      "llm_load_print_meta: UNK token = 0 '<unk>'\n",
      "llm_load_print_meta: LF token  = 13 '<0x0A>'\n",
      "llm_load_tensors: ggml ctx size =    0.10 MB\n",
      "llm_load_tensors: using CUDA for GPU acceleration\n",
      "llm_load_tensors: mem required  =   70.41 MB\n",
      "llm_load_tensors: offloading 32 repeating layers to GPU\n",
      "llm_load_tensors: offloading non-repeating layers to GPU\n",
      "llm_load_tensors: offloaded 35/35 layers to GPU\n",
      "llm_load_tensors: VRAM used: 4095.05 MB\n",
      ".................................................................................................\n"
     ]
    }
   ],
   "source": [
    "params = llama_cpp.llama_model_default_params()\n",
    "params.n_gpu_layers = 35\n",
    "model = llama_cpp.llama_load_model_from_file(b\"../../models/mistral-7b-v0.1-GGUF/ggml-model-Q4_K.gguf\", params=params) # Update this to whatever"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[1, 1014, 2936, 9060, 285, 1142]\n",
      "58\n"
     ]
    }
   ],
   "source": [
    "n_ctx = 512\n",
    "n_len = 32\n",
    "n_parallel = 2\n",
    "prompt = b\"The quick brown fox\"\n",
    "\n",
    "tokens = (llama_cpp.llama_token * n_ctx)()\n",
    "tokens_len = llama_cpp.llama_tokenize(model, prompt, len(prompt), tokens, len(tokens), True, True)\n",
    "print(tokens[:tokens_len])\n",
    "\n",
    "n_kv_req = tokens_len + (n_len - tokens_len) * n_parallel\n",
    "print(n_kv_req)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "llama_new_context_with_model: n_ctx      = 58\n",
      "llama_new_context_with_model: freq_base  = 10000.0\n",
      "llama_new_context_with_model: freq_scale = 1\n",
      "llama_kv_cache_init: offloading v cache to GPU\n",
      "llama_kv_cache_init: offloading k cache to GPU\n",
      "llama_kv_cache_init: VRAM kv self = 7.25 MB\n",
      "llama_new_context_with_model: kv self size  =    7.25 MB\n",
      "llama_build_graph: non-view tensors processed: 740/740\n",
      "llama_new_context_with_model: compute buffer total size = 10.63 MB\n",
      "llama_new_context_with_model: VRAM scratch buffer: 4.51 MB\n",
      "llama_new_context_with_model: total VRAM used: 4106.81 MB (model: 4095.05 MB, context: 11.76 MB)\n"
     ]
    }
   ],
   "source": [
    "\n",
    "ctx_params = llama_cpp.llama_context_default_params()\n",
    "ctx_params.seed = 1234\n",
    "ctx_params.n_ctx = n_kv_req\n",
    "ctx_params.n_batch = max(n_len, n_parallel)\n",
    "ctx_params.n_threads = 1\n",
    "ctx_params.n_threads_batch = 1\n",
    "ctx = llama_cpp.llama_new_context_with_model(model, ctx_params)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "n_ctx = llama_cpp.llama_n_ctx(ctx)\n",
    "batch = llama_cpp.llama_batch_init(max(tokens_len, n_parallel), 0, 1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "import ctypes\n",
    "\n",
    "batch.n_tokens = tokens_len\n",
    "for i in range(tokens_len):\n",
    "    batch.token[i] = tokens[i]\n",
    "    batch.pos[i] = i\n",
    "    batch.seq_id[i][0] = 0\n",
    "    batch.n_seq_id[i] = 1\n",
    "    batch.logits[i] = False\n",
    "\n",
    "batch.logits[batch.n_tokens - 1] = True\n",
    "\n",
    "if llama_cpp.llama_decode(ctx, batch) != 0:\n",
    "    print(\"Error decoding\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "for i in range(n_parallel):\n",
    "    llama_cpp.llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "7\n",
      "[' j', ' jumped']\n",
      "8\n",
      "[' jumps', ' jumped over']\n",
      "9\n",
      "[' jumps over', ' jumped over the']\n",
      "10\n",
      "[' jumps over the', ' jumped over the lazy']\n",
      "11\n",
      "[' jumps over the lazy', ' jumped over the lazy dog']\n",
      "12\n",
      "[' jumps over the lazy dog', ' jumped over the lazy dog.']\n",
      "13\n",
      "[' jumps over the lazy dog.', ' jumped over the lazy dog.\\n']\n",
      "14\n",
      "[' jumps over the lazy dog.\\n', ' jumped over the lazy dog.\\n\\n']\n",
      "15\n",
      "[' jumps over the lazy dog.\\n\\n', ' jumped over the lazy dog.\\n\\nThe']\n",
      "16\n",
      "[' jumps over the lazy dog.\\n\\nI', ' jumped over the lazy dog.\\n\\nThe quick']\n",
      "17\n",
      "[' jumps over the lazy dog.\\n\\nI’', ' jumped over the lazy dog.\\n\\nThe quick brown']\n",
      "18\n",
      "[' jumps over the lazy dog.\\n\\nI’m', ' jumped over the lazy dog.\\n\\nThe quick brown f']\n",
      "19\n",
      "[' jumps over the lazy dog.\\n\\nI’m not', ' jumped over the lazy dog.\\n\\nThe quick brown fox']\n",
      "20\n",
      "[' jumps over the lazy dog.\\n\\nI’m not sure', ' jumped over the lazy dog.\\n\\nThe quick brown fox jumped']\n",
      "21\n",
      "[' jumps over the lazy dog.\\n\\nI’m not sure if', ' jumped over the lazy dog.\\n\\nThe quick brown fox jumped over']\n",
      "22\n",
      "[' jumps over the lazy dog.\\n\\nI’m not sure if that', ' jumped over the lazy dog.\\n\\nThe quick brown fox jumped over the']\n",
      "23\n",
      "[' jumps over the lazy dog.\\n\\nI’m not sure if that’', ' jumped over the lazy dog.\\n\\nThe quick brown fox jumped over the lazy']\n",
      "24\n",
      "[' jumps over the lazy dog.\\n\\nI’m not sure if that’s', ' jumped over the lazy dog.\\n\\nThe quick brown fox jumped over the lazy dog']\n",
      "25\n",
      "[' jumps over the lazy dog.\\n\\nI’m not sure if that’s the', ' jumped over the lazy dog.\\n\\nThe quick brown fox jumped over the lazy dog.']\n",
      "26\n",
      "[' jumps over the lazy dog.\\n\\nI’m not sure if that’s the most', ' jumped over the lazy dog.\\n\\nThe quick brown fox jumped over the lazy dog.\\n']\n",
      "27\n",
      "[' jumps over the lazy dog.\\n\\nI’m not sure if that’s the most famous', ' jumped over the lazy dog.\\n\\nThe quick brown fox jumped over the lazy dog.\\n\\n']\n",
      "28\n",
      "[' jumps over the lazy dog.\\n\\nI’m not sure if that’s the most famous sentence', ' jumped over the lazy dog.\\n\\nThe quick brown fox jumped over the lazy dog.\\n\\nThe']\n",
      "29\n",
      "[' jumps over the lazy dog.\\n\\nI’m not sure if that’s the most famous sentence in', ' jumped over the lazy dog.\\n\\nThe quick brown fox jumped over the lazy dog.\\n\\nThe quick']\n",
      "30\n",
      "[' jumps over the lazy dog.\\n\\nI’m not sure if that’s the most famous sentence in the', ' jumped over the lazy dog.\\n\\nThe quick brown fox jumped over the lazy dog.\\n\\nThe quick brown']\n",
      "31\n",
      "[' jumps over the lazy dog.\\n\\nI’m not sure if that’s the most famous sentence in the English', ' jumped over the lazy dog.\\n\\nThe quick brown fox jumped over the lazy dog.\\n\\nThe quick brown f']\n",
      "32\n",
      "[' jumps over the lazy dog.\\n\\nI’m not sure if that’s the most famous sentence in the English language', ' jumped over the lazy dog.\\n\\nThe quick brown fox jumped over the lazy dog.\\n\\nThe quick brown fox']\n"
     ]
    }
   ],
   "source": [
    "import ctypes\n",
    "\n",
    "streams = [\"\"] * n_parallel\n",
    "i_batch = [batch.n_tokens - 1] * n_parallel\n",
    "\n",
    "n_cur = batch.n_tokens\n",
    "n_decode = 0\n",
    "\n",
    "while n_cur <= n_len:\n",
    "    batch.n_tokens = 0\n",
    "    for i in range(n_parallel):\n",
    "        if i_batch[i] < 0:\n",
    "            continue\n",
    "        \n",
    "        n_vocab = llama_cpp.llama_n_vocab(model)\n",
    "        logits = llama_cpp.llama_get_logits_ith(ctx, i_batch[i])\n",
    "\n",
    "        candidates = (llama_cpp.llama_token_data * n_vocab)()\n",
    "\n",
    "        for token_id in range(n_vocab):\n",
    "            candidates[token_id].id = token_id\n",
    "            candidates[token_id].logit = logits[token_id]\n",
    "            candidates[token_id].p = 0.0\n",
    "\n",
    "        candidates_p = llama_cpp.llama_token_data_array(candidates, len(candidates), False)\n",
    "\n",
    "        top_k = 40\n",
    "        top_p = 0.9\n",
    "        temp = 0.4\n",
    "\n",
    "        llama_cpp.llama_sample_top_k(ctx, ctypes.byref(candidates_p), top_k, 1)\n",
    "        llama_cpp.llama_sample_top_p(ctx, ctypes.byref(candidates_p), top_p, 1)\n",
    "        llama_cpp.llama_sample_temp (ctx, ctypes.byref(candidates_p), temp)\n",
    "        \n",
    "        new_token_id = llama_cpp.llama_sample_token(ctx, ctypes.byref(candidates_p))\n",
    "\n",
    "        if new_token_id == llama_cpp.llama_token_eos(ctx) or n_cur == n_len:\n",
    "            i_batch[i] = -1\n",
    "            continue\n",
    "\n",
    "        buf = (ctypes.c_char * 32)()\n",
    "        outlen = llama_cpp.llama_token_to_piece(model, new_token_id, buf, len(buf))\n",
    "        streams[i] += bytes(buf[:outlen]).decode(\"utf-8\")\n",
    "\n",
    "        batch.token[batch.n_tokens] = new_token_id\n",
    "        batch.pos[batch.n_tokens] = n_cur\n",
    "        batch.seq_id[batch.n_tokens][0] = i\n",
    "        batch.n_seq_id[batch.n_tokens] = 1\n",
    "        batch.logits[batch.n_tokens] = True\n",
    "\n",
    "        i_batch[i] = batch.n_tokens\n",
    "        batch.n_tokens += 1\n",
    "        n_decode += 1\n",
    "    \n",
    "    if batch.n_tokens == 0:\n",
    "        break\n",
    "\n",
    "    n_cur += 1\n",
    "\n",
    "    if llama_cpp.llama_decode(ctx, batch) != 0:\n",
    "        print(\"Error decoding\", flush=True)\n",
    "        break\n",
    "    print(n_cur)\n",
    "    print(streams)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[' jumps over the lazy dog.\\n\\nI’m not sure if that’s the most famous sentence in the English language', ' jumped over the lazy dog.\\n\\nThe quick brown fox jumped over the lazy dog.\\n\\nThe quick brown fox']\n"
     ]
    }
   ],
   "source": [
    "print(streams)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "llama_cpp.llama_batch_free(batch)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "llama_cpp.llama_free(ctx)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "llama_cpp.llama_free_model(model)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "llama_cpp.llama_backend_free()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5+"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}