File size: 6,169 Bytes
0f107cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
867f0d3
0f107cb
 
 
867f0d3
0f107cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
# os.environ["nnUNet_raw"] = "/home/head_neck/algorithm-template_2/nnunet_raw"
# os.environ["nnUNet_preprocessed"] = "/home/head_neck/algorithm-template_2/nnunet_preprocessed"
# os.environ["nnUNet_results"] = "/home/head_neck/algorithm-template/nnunet_results_task_1"
os.environ["nnUNet_raw"] = "./nnunet_raw"
os.environ["nnUNet_preprocessed"] = "./nnunet_preprocessed"
# os.environ["nnUNet_results"] = "./nnunet_results"
from typing import Dict
import tempfile
import subprocess
import SimpleITK as sitk
from nnunetv2.inference.predict_from_raw_data import nnUNetPredictor
from batchgenerators.utilities.file_and_folder_operations import load_json, join, isfile, maybe_mkdir_p, isdir, subdirs, \
    save_json
# import torch
import numpy as np

from base_algorithm import BaseSynthradAlgorithm
from revert_normalisation import get_ct_normalisation_values, revert_normalisation_single_modified

import torch
import shutil

import os

os.environ["OPENBLAS_NUM_THREADS"] = "1"
force_cpu = os.getenv("FORCE_CPU", "0") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() and not force_cpu else "cpu")



class SynthradAlgorithm1(BaseSynthradAlgorithm):
    """
    This class implements a simple synthetic CT generation algorithm that segments all values greater than 2 in the input image.

    Author: Suraj Pai (b.pai@maastrichtuniversity.nl)
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def predict(self, input_dict: Dict[str, sitk.Image]) -> sitk.Image:
        assert list(input_dict.keys()) == ["image", "mask", "region"]

        region = input_dict["region"]
        mr_sitk = input_dict["image"]
        mask_sitk = input_dict["mask"]

        mr_np = sitk.GetArrayFromImage(mr_sitk).astype("float32")
        mask_np = sitk.GetArrayFromImage(mask_sitk).astype("float32")

        mr_np[mask_np == 0] = 0

        preprocessed_mr_sitk = sitk.GetImageFromArray(mr_np)
        preprocessed_mr_sitk.CopyInformation(mr_sitk)

        if region == "Head and Neck":
            dataset_name = "Dataset262"
            result_folder = "nnUNetTrainerMRCT_loss_masked_perception_masked__nnUNetResEncUNetLPlans__3d_fullres"
            plans_path = "./262_gt_nnUNetResEncUNetLPlans.json"
        if region == "Abdomen":
            dataset_name = "Dataset260"
            result_folder = "nnUNetTrainerMRCT_loss_masked_perception_masked__nnUNetResEncUNetLPlans__3d_fullres"
            plans_path = "./260_gt_nnUNetResEncUNetLPlans.json"
        if region == "Thorax":
            dataset_name = "Dataset264"
            result_folder = "nnUNetTrainerMRCT_loss_masked_perception_masked__nnUNetResEncUNetLPlans__3d_fullres"
            plans_path = "./264_gt_nnUNetResEncUNetLPlans.json"



        # predictor = nnUNetPredictor(
        #     tile_step_size=0.5,
        #     use_gaussian=True,
        #     use_mirroring=True,
        #     perform_everything_on_device=True,
        #     device=torch.device('cuda', 0),
        #     verbose=True,
        #     verbose_preprocessing=True,
        #     allow_tqdm=True
        # )
        predictor = nnUNetPredictor(
            tile_step_size=0.50,         
            use_gaussian=True,
            use_mirroring=False,      
            perform_everything_on_device=(device.type == "cuda"),
            device=device,
            verbose=True,
        )
        predictor.initialize_from_trained_model_folder(
            join(os.environ["nnUNet_results"], f'{dataset_name}/{result_folder}'),
            #use_folds=(0, 1, 2, 3, 4),
            use_folds=(0, ),
            checkpoint_name='checkpoint_final.pth',
        )

        sitk_spacing = mr_sitk.GetSpacing()      
        sitk_origin  = mr_sitk.GetOrigin()       
        sitk_dir     = mr_sitk.GetDirection()    

        props = {
            'sitk_stuff': {
                'spacing': tuple(sitk_spacing),   
                'origin':  tuple(sitk_origin),    
                'direction': tuple(sitk_dir),     
            },
            'spacing': [sitk_spacing[2], sitk_spacing[1], sitk_spacing[0]]  
        }

        img = sitk.GetArrayFromImage(mr_sitk).astype(np.float32)
        img = np.expand_dims(img, 0) 
        ret = predictor.predict_single_npy_array(img, props, None, 'TRUNCATED', False)
        
        pred_path = "./TRUNCATED.nii.gz"
        pred_sitk = sitk.ReadImage(pred_path)

        ct_mean, ct_std = get_ct_normalisation_values(plans_path)
        mask_sitk = sitk.Cast(mask_sitk, sitk.sitkUInt8)

        pred_sitk = revert_normalisation_single_modified(pred_sitk, ct_mean, ct_std, mask_sitk=mask_sitk)
        os.remove(pred_path)
        shutil.rmtree("./imagesTs", ignore_errors=True)  
        shutil.rmtree("./predictions", ignore_errors=True)  
        return pred_sitk

# if __name__ == '__main__':
    
#     # Run the algorithm on the default input and output paths specified in BaseSynthradAlgorithm.
#     SynthradAlgorithm().process()

# if __name__ == '__main__':
# #     # test Brain
# #     #start_time = time.time()
# #     # img_s_path = '//datasets/work/hb-synthrad2023/source/raw_data/Task1/brain/1BA001/mr.mha'
# #     # img_m_path = '//datasets/work/hb-synthrad2023/source/raw_data/Task1/brain/1BA001/mask.mha'
# #     # img_fakeB_path = '//datasets/work/hb-synthrad2023/work/bw_workplace/output/task1_brain/p2p3D/ensemble_t1_brain_final_e2/test_predictions/1BA001/ct_fakeB.mha'
# #     # region = 'Head and Neck'

# #     # test Pelvis
#     img_s_path = '/home/head_neck/algorithm-template_2/task2/2ABA033_0000.mha'
#     img_m_path = '/home/head_neck/algorithm-template_2/task2/2ABA033_mask.mha'
# #     #img_fakeB_path = '//datasets/work/hb-synthrad2023/work/bw_workplace/output/task1_pelvis/p2p3D/exp6_data_7_size_256_256_56_batch_3_lr_0.0002_aug3d_fold0_resumed_multiscale_2dsample_5/epoch_best/epoch75/test_predictions/1PA005/ct_fakeB.mha'
#     region = 'Abdomen'


#     # start test
#     input_dict = {
#         "image": sitk.ReadImage(img_s_path),
#         "mask": sitk.ReadImage(img_m_path),
#         "region": region
#     }
#     algorithm = SynthradAlgorithm()
#     img_t = algorithm.predict(input_dict)