Spaces:
Runtime error
Runtime error
File size: 4,298 Bytes
7b5454e 2544172 7b5454e 2544172 7b5454e 2544172 7b5454e 2544172 7b5454e 2544172 7b5454e 2544172 7b5454e 2544172 7b5454e 2544172 7b5454e 2544172 7b5454e 2544172 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import os
import gradio as gr
from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer
HF_API = os.environ.get("HF_API")
desc_model = GPT2LMHeadModel.from_pretrained("aegrif/gpt2_spell_gen", use_auth_token=HF_API)
desc_tokenizer = GPT2Tokenizer.from_pretrained("aegrif/gpt2_spell_gen", use_auth_token=HF_API)
desc_pipeline = pipeline(task="text-generation", model=desc_model, tokenizer=desc_tokenizer, use_auth_token=HF_API)
name_model = GPT2LMHeadModel.from_pretrained("aegrif/spell_name_gen", use_auth_token=HF_API)
name_tokenizer = GPT2Tokenizer.from_pretrained("aegrif/spell_name_gen", use_auth_token=HF_API)
name_pipeline = pipeline(task="text-generation", model=name_model, tokenizer=name_tokenizer, use_auth_token=HF_API)
def desc_predict(text, temperature, top_k, top_p, max_length):
input_text = f"<|name|> {text} <|spell|>"
desc_pipeline.model.config.pad_token_id = desc_pipeline.model.config.eos_token_id
desc_pipeline.model.config.temperature = temperature
desc_pipeline.model.config.top_k = top_k
desc_pipeline.model.config.top_p = top_p
predictions = desc_pipeline(input_text, max_length=max_length, num_return_sequences=1)[0]["generated_text"]
spell_start = len(text) + 19
output = text + "\n\n" + predictions[spell_start:]
return output.strip()
def name_predict(temperature, top_k, top_p, max_length):
input_text = "<|name|> "
name_pipeline.model.config.pad_token_id = name_pipeline.model.config.eos_token_id
predictions = name_pipeline(input_text, max_length=50, num_return_sequences=1)[0]["generated_text"]
spell_name = predictions[9:].strip()
desc_predictions = desc_predict(spell_name, temperature, top_k, top_p, max_length)
return spell_name, desc_predictions
title = "# Spell generation with GPT-2"
description = "## Generate your own spells"
examples = [["Speak with Objects"], ["Summon Burley"], ["Moon Step"], ["Burden of the Gods"], ["Shape Rock"],
["Bard's Laughter"], ["Mundane Foresight"], ["Word of Cancellation"]]
with gr.Blocks(css="#spell-row {justify-content: flex-start; }") as interface:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row(variant="compact", elem_id="spell-row"):
with gr.Column(scale=1):
name = gr.Textbox(lines=1, label="Spell Name", placeholder="Enter your spell name here...")
with gr.Row(variant="compact", elem_id="spell-row"):
with gr.Column(scale=3):
gr.Examples(examples, inputs=name)
with gr.Row(variant="compact", elem_id="spell-row"):
gr.Markdown("## Model Settings")
with gr.Row(variant="compact", elem_id="spell-row"):
with gr.Column(scale=1):
max_length = gr.Slider(minimum=50, maximum=800, step=50, value=400, label="Max Length")
with gr.Column(scale=1):
temperature = gr.Slider(minimum=0.1, maximum=float(1.9), step=0.1, value=float(1), label="Temperature")
with gr.Row(variant="compact", elem_id="spell-row"):
with gr.Column(scale=1):
top_k = gr.Slider(minimum=0, maximum=1000, step=10, value=50, label="Top K")
with gr.Column(scale=1):
top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="Top P")
with gr.Row(variant="compact", elem_id="spell-row"):
output = gr.Textbox(label="Generated Spell", placeholder="Your spell will appear here.")
with gr.Row(variant="compact", elem_id="spell-row"):
with gr.Column(scale=1):
generate_btn = gr.Button("Generate Spell")
with gr.Column(scale=1):
random_btn = gr.Button("Random Spell")
with gr.Row(variant="compact", elem_id="spell-row"):
gr.Markdown(
"**Max Length**: The maximum length of the generated spell.\n\n**Temperature**: The randomness of the generated spell. Higher values are more random, lower values are more deterministic.\n\n**Top K**: The number of highest probability vocabulary tokens to keep for top-k-filtering.\n\n**Top P**: The cumulative probability for top-p-filtering.")
generate_btn.click(fn=desc_predict, inputs=[name, temperature, top_k, top_p, max_length], outputs=output)
random_btn.click(fn=name_predict, inputs=[temperature, top_k, top_p, max_length], outputs=[name, output])
interface.launch()
|