File size: 5,513 Bytes
b9fc179
22f29b2
 
b9fc179
72d02aa
b9fc179
5bae2a3
 
 
01c6427
492193c
33fba6c
 
77679d4
492193c
88c3e60
492193c
5760476
88c3e60
 
 
77679d4
88c3e60
 
 
492193c
22f29b2
 
 
 
 
 
 
 
 
 
 
 
 
33fba6c
 
 
 
 
5bae2a3
22f29b2
b70c12c
33fba6c
 
5bae2a3
22f29b2
b70c12c
33fba6c
 
5bae2a3
c296fbd
 
492193c
c1f5793
0d65562
c1f5793
492193c
b9fc179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1f5793
b9fc179
 
 
 
 
 
 
 
 
 
c1f5793
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import streamlit as st
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
import networkx as nx
import random
random.seed(42)
np.random.seed(42)
st.set_page_config(layout="wide")

# Load and process data
df = pd.read_csv('spices_by_cuisine_with_all_flavors.csv', index_col=0)
pivot = df.drop(columns=['Flavor Description']).sort_index()

cuisines = {}
for col in pivot.columns:
    filter = pivot[col] == 1
    cuisines[col] = pivot[filter].index.to_list()

spices = {}
pivot_t = pivot.T.sort_index()
for col in pivot_t.columns:
    filter = pivot_t[col] == 1
    spices[col] = pivot_t[filter].index.to_list()

def similarity(ratings, kind='user', epsilon=1e-9):
        if kind == 'user':
            sim = ratings.dot(ratings.T) + epsilon
        elif kind == 'item':
            sim = ratings.T.dot(ratings) + epsilon
        norms = np.array([np.sqrt(np.diagonal(sim))])
        return (sim / norms / norms.T)
pivot_names = pivot_t.columns
pivot_np = np.array(pivot_t)
cuisine_similarity = pd.DataFrame(similarity(pivot_np, kind='user'))
cuisine_similarity.columns = pivot_t.index.values
cuisine_similarity.index = pivot_t.index.values

st.title('Spices Across Cuisines')

col1, col2, col3 = st.columns(3)

with col1:
    st.subheader('By Cuisine')
    select_cuisine = st.selectbox('Select a cuisine to view the top 10 spices',cuisines.keys())
    st.write(f'The top 10 ingredients in {select_cuisine}  are:', cuisines[select_cuisine])

with col2:
    st.subheader('By Spice')
    select_spice = st.selectbox('Select a spice to view which cuisines it is present in',spices.keys())
    st.write(f'{select_spice} is part of the following cuisines:', spices[select_spice])

with col3:
    st.subheader("Similar Cuisines")
    select_cuisine_sim = st.selectbox('Select a cuisine to view the 10 most similar cuisines by spices',cuisines.keys())
    st.write(f'{select_cuisine_sim} is most similar to:', cuisine_similarity[select_cuisine_sim].sort_values(ascending=False).index[1:11].to_list())

count = pd.DataFrame(pivot.T.sum().sort_values(ascending=False).reset_index().rename(columns={0: "Count"}))
fig_bar = px.bar(count, x="Spice", y="Count", title="Most Frequently Occuring Spices Across Cuisines")
st.plotly_chart(fig_bar, use_container_width=True)

# Create a graph
G = nx.Graph()

# Add nodes for each cuisine and spice, and edges based on the DataFrame
for col in df.columns:
    if col != "Flavor Description":
        G.add_node(col, type='cuisine')
        spices_for_cuisine = df[df[col] == 1].index.tolist()
        for spice in spices_for_cuisine:
            G.add_node(spice, type='spice')
            G.add_edge(col, spice)

# Get node positions using the spring layout
pos = nx.spring_layout(G)

# Create edge trace
edge_trace = go.Scatter(
    x=[],
    y=[],
    line=dict(width=0.5, color='#888'),
    hoverinfo='none',
    mode='lines')

for edge in G.edges():
    x0, y0 = pos[edge[0]]
    x1, y1 = pos[edge[1]]
    edge_trace['x'] += tuple([x0, x1, None])
    edge_trace['y'] += tuple([y0, y1, None])

# Assign a unique color to each cuisine
cuisine_colors = {cuisine: f"hsl({i * (360 // len(df.columns[:-1]))}, 80%, 50%)" 
                  for i, cuisine in enumerate(df.columns) if cuisine != "Flavor Description"}


# Create node trace for cuisines
node_trace_cuisines = go.Scatter(
    x=[],
    y=[],
    text=[],
    hovertext=[],
    mode='markers+text',
    hoverinfo='text',
    marker=dict(
        showscale=False,
        size=20,
        color=[],
        line=dict(width=0)))

# Create node trace for spices
node_trace_spices = go.Scatter(
    x=[],
    y=[],
    text=[],
    hovertext=[],
    mode='markers+text',
    hoverinfo='text',
    marker=dict(
        showscale=False,
        color='grey',
        size=10,
        line=dict(width=0)))

for node in G.nodes():
    x, y = pos[node]
    if G.nodes[node]['type'] == 'cuisine':
        node_trace_cuisines['x'] += tuple([x])
        node_trace_cuisines['y'] += tuple([y])
        node_trace_cuisines['text'] += tuple([node])
        node_trace_cuisines['marker']['color'] += tuple([cuisine_colors[node]])
        
        # Collect all spices associated with this cuisine
        spices_associated = df[df[node] == 1].index.tolist()
        hover_text = f"{node} uses: {', '.join(spices_associated)}"
        node_trace_cuisines['hovertext'] += tuple([hover_text])
        
    else:
        node_trace_spices['x'] += tuple([x])
        node_trace_spices['y'] += tuple([y])
        node_trace_spices['text'] += tuple([node])
        
        # Collect all cuisines that use this spice
        cuisines_using_spice = df.columns[df.loc[node] == 1].tolist()
        hover_text = f"{node} is used in: {', '.join(cuisines_using_spice)}"
        node_trace_spices['hovertext'] += tuple([hover_text])

# Create the network graph figure with updated hover information
fig_graph = go.Figure(data=[edge_trace, node_trace_cuisines, node_trace_spices],
                layout=go.Layout(
                    title="Network Graph of Cuisines and their Spices",
                    titlefont_size=16,
                    showlegend=False,
                    hovermode='closest',
                    margin=dict(b=20, l=5, r=5, t=40),
                    xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
                    yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
                )

st.plotly_chart(fig_graph, use_container_width=True)