Spaces:
Sleeping
Sleeping
File size: 5,020 Bytes
e71c4e6 e031d5d e71c4e6 0c47d68 e71c4e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import os
from threading import Lock
from typing import Any, Dict, Optional, Tuple
import gradio as gr
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.prompts.chat import (ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate)
from src.core.chunking import chunk_file
from src.core.embedding import embed_files
from src.core.parsing import read_file
VECTOR_STORE = "faiss"
MODEL = "openai"
EMBEDDING = "openai"
MODEL = "gpt-3.5-turbo-16k"
K = 5
USE_VERBOSE = True
API_KEY = os.environ["OPENAI_API_KEY"]
system_template = """
The context below contains excerpts from 'Design by Fire,' by Emily Elizabeth Schlickman and Brett Milligan. You must only use the information in the context below to formulate your response. If there is not enough information to formulate a response, you must respond with
"I'm sorry, but I can't find the answer to your question in, the book Design by Fire."
Here is the context:
{context}
{chat_history}
"""
# Create the chat prompt templates
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}")
]
qa_prompt = ChatPromptTemplate.from_messages(messages)
class AnswerConversationBufferMemory(ConversationBufferMemory):
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
return super(AnswerConversationBufferMemory, self).save_context(inputs,{'response': outputs['answer']})
def getretriever():
with open("./resources/design-by-fire.pdf", 'rb') as uploaded_file:
try:
file = read_file(uploaded_file)
except Exception as e:
print(e)
chunked_file = chunk_file(file, chunk_size=512, chunk_overlap=0)
folder_index = embed_files(
files=[chunked_file],
embedding=EMBEDDING,
vector_store=VECTOR_STORE,
openai_api_key=API_KEY,
)
return folder_index.index.as_retriever(verbose=True, search_type="similarity", search_kwargs={"k": K})
retriever = getretriever()
def getanswer(chain, question, history):
if hasattr(chain, "value"):
chain = chain.value
if hasattr(history, "value"):
history = history.value
if hasattr(question, "value"):
question = question.value
history = history or []
lock = Lock()
lock.acquire()
try:
output = chain({"question": question})
output = output["answer"]
history.append((question, output))
except Exception as e:
raise e
finally:
lock.release()
return history, history, gr.update(value="")
def load_chain(inputs = None):
llm = ChatOpenAI(
openai_api_key=API_KEY,
model_name=MODEL,
verbose=True)
chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
return_source_documents=USE_VERBOSE,
memory=AnswerConversationBufferMemory(memory_key="chat_history", return_messages=True),
verbose=USE_VERBOSE,
combine_docs_chain_kwargs={"prompt": qa_prompt})
return chain
CSS ="""
.contain { display: flex; flex-direction: column; }
.gradio-container { height: 100vh !important; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; overflow: auto;}
"""
with gr.Blocks() as block:
with gr.Row():
with gr.Column(scale=0.75):
with gr.Row():
gr.Markdown("<h1>Design by Fire</h1>")
with gr.Row():
gr.Markdown("by Emily Elizabeth Schlickman and Brett Milligan")
chatbot = gr.Chatbot(elem_id="chatbot").style(height=600)
with gr.Row():
message = gr.Textbox(
label="",
placeholder="Design by Fire",
lines=1,
)
with gr.Row():
submit = gr.Button(value="Send", variant="primary", scale=1)
state = gr.State()
chain_state = gr.State(load_chain)
submit.click(getanswer, inputs=[chain_state, message, state], outputs=[chatbot, state, message])
message.submit(getanswer, inputs=[chain_state, message, state], outputs=[chatbot, state, message])
with gr.Column(scale=0.25):
with gr.Row():
gr.Markdown("<h1><center>Suggestions</center></h1>")
ex1 = gr.Button(value="What are the main factors and trends discussed in the book that contribute to the changing behavior of wildfires?", variant="primary")
ex1.click(getanswer, inputs=[chain_state, ex1, state], outputs=[chatbot, state, message])
ex2 = gr.Button(value="How does the book explore the relationship between fire and different landscapes, such as wilderness and urban areas?", variant="primary")
ex2.click(getanswer, inputs=[chain_state, ex2, state], outputs=[chatbot, state, message])
ex3 = gr.Button(value="What are the three approaches to designing with fire that the book presents?", variant="primary")
ex3.click(getanswer, inputs=[chain_state, ex3, state], outputs=[chatbot, state, message])
block.launch(debug=True) |