Spaces:
Sleeping
Sleeping
File size: 2,007 Bytes
e71c4e6 28333f8 e71c4e6 28333f8 e71c4e6 28333f8 e71c4e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
from typing import List, Type
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import VectorStore
from langchain.vectorstores.faiss import FAISS
from .debug import FakeEmbeddings, FakeVectorStore
from .parsing import File
class FolderIndex:
"""Index for a collection of files (a folder)"""
def __init__(self, files: List[File], index: VectorStore):
self.name: str = "default"
self.files = files
self.index: VectorStore = index
@staticmethod
def _combine_files(files: List[File]) -> List[Document]:
"""Combines all the documents in a list of files into a single list."""
all_texts = []
for file in files:
for doc in file.docs:
doc.metadata["file_name"] = file.name
doc.metadata["file_id"] = file.id
all_texts.append(doc)
return all_texts
@classmethod
def from_files(
cls, files: List[File], embeddings: Embeddings, vector_store: Type[VectorStore]
) -> "FolderIndex":
"""Creates an index from files."""
all_docs = cls._combine_files(files)
index = vector_store.from_documents(
documents=all_docs,
embedding=embeddings,
)
return cls(files=files, index=index)
def embed_files(
files: List[File], embedding: str, vector_store: str, **kwargs
) -> FolderIndex:
model_name = "BAAI/bge-small-en"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
model_norm = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
# embeddings = OpenAIEmbeddings
embeddings = model_norm
return FolderIndex.from_files(
files=files, embeddings=embeddings, vector_store=FAISS
)
|