File size: 5,020 Bytes
e71c4e6
 
 
 
 
 
 
 
 
 
 
 
 
e031d5d
 
 
e71c4e6
 
 
 
 
 
 
 
 
0c47d68
 
 
 
e71c4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

import os
from threading import Lock
from typing import Any, Dict, Optional, Tuple

import gradio as gr
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.prompts.chat import (ChatPromptTemplate,
                                    HumanMessagePromptTemplate,
                                    SystemMessagePromptTemplate)

from src.core.chunking import chunk_file
from src.core.embedding import embed_files
from src.core.parsing import read_file

VECTOR_STORE = "faiss"
MODEL = "openai"
EMBEDDING = "openai"
MODEL = "gpt-3.5-turbo-16k"
K = 5
USE_VERBOSE = True
API_KEY = os.environ["OPENAI_API_KEY"]
system_template = """
The context below contains excerpts from 'Design by Fire,' by Emily Elizabeth Schlickman and Brett Milligan. You must only use the information in the context below to formulate your response. If there is not enough information to formulate  a response, you must respond with
"I'm sorry, but I can't find the answer to your question in, the book Design by Fire."

Here is the context:
{context}
{chat_history}
"""

# Create the chat prompt templates
messages = [
  SystemMessagePromptTemplate.from_template(system_template),
  HumanMessagePromptTemplate.from_template("{question}")
]
qa_prompt = ChatPromptTemplate.from_messages(messages)

class AnswerConversationBufferMemory(ConversationBufferMemory):
  def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
    return super(AnswerConversationBufferMemory, self).save_context(inputs,{'response': outputs['answer']})

def getretriever():
  with open("./resources/design-by-fire.pdf", 'rb') as uploaded_file:
    try:
      file = read_file(uploaded_file)
    except Exception as e:
      print(e)

  chunked_file = chunk_file(file, chunk_size=512, chunk_overlap=0)
  folder_index = embed_files(
    files=[chunked_file],
    embedding=EMBEDDING,
    vector_store=VECTOR_STORE,
    openai_api_key=API_KEY,
  )
  return folder_index.index.as_retriever(verbose=True, search_type="similarity", search_kwargs={"k": K})

retriever = getretriever()

def getanswer(chain, question, history):
  if hasattr(chain, "value"):
    chain = chain.value
  if hasattr(history, "value"):
    history = history.value
  if hasattr(question, "value"):
    question = question.value

  history = history or []
  lock = Lock()
  lock.acquire()
  try:
    output = chain({"question": question})
    output = output["answer"]
    history.append((question, output))
  except Exception as e:
    raise e
  finally:
    lock.release()
  return history, history, gr.update(value="")

def load_chain(inputs = None):
  llm = ChatOpenAI(
        openai_api_key=API_KEY,
        model_name=MODEL,
        verbose=True)
  chain = ConversationalRetrievalChain.from_llm(
    llm,
    retriever=retriever,
    return_source_documents=USE_VERBOSE,
    memory=AnswerConversationBufferMemory(memory_key="chat_history", return_messages=True),
    verbose=USE_VERBOSE,
    combine_docs_chain_kwargs={"prompt": qa_prompt})
  return chain

CSS ="""
.contain { display: flex; flex-direction: column; }
.gradio-container { height: 100vh !important; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; overflow: auto;}
"""

with gr.Blocks() as block:
  with gr.Row():
    with gr.Column(scale=0.75):
      with gr.Row():
        gr.Markdown("<h1>Design by Fire</h1>")
      with gr.Row():
        gr.Markdown("by Emily Elizabeth Schlickman and Brett Milligan")
      chatbot = gr.Chatbot(elem_id="chatbot").style(height=600)

      with gr.Row():
          message = gr.Textbox(
              label="",
              placeholder="Design by Fire",
              lines=1,
          )
      with gr.Row():
          submit = gr.Button(value="Send", variant="primary", scale=1)

      state = gr.State()
      chain_state = gr.State(load_chain)

      submit.click(getanswer, inputs=[chain_state, message, state], outputs=[chatbot, state, message])
      message.submit(getanswer, inputs=[chain_state, message, state], outputs=[chatbot, state, message])

    with gr.Column(scale=0.25):
      with gr.Row():
        gr.Markdown("<h1><center>Suggestions</center></h1>")
      ex1 = gr.Button(value="What are the main factors and trends discussed in the book that contribute to the changing behavior of wildfires?", variant="primary")
      ex1.click(getanswer, inputs=[chain_state, ex1, state], outputs=[chatbot, state, message])
      ex2 = gr.Button(value="How does the book explore the relationship between fire and different landscapes, such as wilderness and urban areas?", variant="primary")
      ex2.click(getanswer, inputs=[chain_state, ex2, state], outputs=[chatbot, state, message])
      ex3 = gr.Button(value="What are the three approaches to designing with fire that the book presents?", variant="primary")
      ex3.click(getanswer, inputs=[chain_state, ex3, state], outputs=[chatbot, state, message])

block.launch(debug=True)